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Agenda

* The status quo:
* How systems in the cloud operate today: disaggregation

* The grand vision
 Vertically integrated storage instead of disaggregation

* Reality checks:
* Does the necessary technology exist?

* The motivation
* What can be done with vertically integrated storage

* How to get there
* Building the infrastructure for vertically integrated storage
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The cloud is a search engine
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Separation of compute and storage
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Look at different sources
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Your application is not a search engine
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The dominant architecture

* Cloud architecture has dominated the landscape in the last two
decades

* This is changing and changing fast

* Acceptance that some things do not work in a disaggregated, scale out
architecture

* Recognition that the architecture is highly inefficient and wasteful

* As architectures become data centric, they tend to focus more on the storage
and memory rather than the compute
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A vision (Intel’s) of disaggregation
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Disaggregation

* Disaggregated storage provides elasticity for compute

e But results in a higher price for data movement:
* Long data paths from storage to compute
* Many unnecessary data movements

* A lot of overhead in reading and writing to storage (compression, encryption,
data transformations, parallel I/O for performance, replication, etc.)

* There is a way to minimize the price of disaggregation ...



CPU, GPU, DPU

Vertical integration
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Near memory accelerator (Oracle Sparc M7
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Smart NIC (Azure Boost for storage
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Smart CXL disaggregated memory
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Smart storage (Amazon AQUA)
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Smart storage (SSD + FPGA)

Intelligent self-processing
for the era of big data

https://semiconductor.samsung.com/ssd/smart-ssd/
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The Data Center Tax
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Profiling a warehouse-scale computer, ISCA 2015
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Data Compression (Microsoft Zipline/Corsica)

Corsica: A project zipline ASIC

Compression without compromise:

High compression ratio

Low latency

Inline encryption, authentication
High total throughput

Disk write latency with Corsica

rs‘mo:; and Corsica does $SD
etk the work read/write

Corsica is 15-25 times faster than the CPU

S d
it CPU does the work $SD
overhead Compression | Encryption | Authentication | Data integrity read/write

Disk write latency today

https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
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Very large scale cloud data processing
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Reducing data movement (Farview)
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Korolija et al. Farview: Disaggregated Memory with Operator Off-loading for Database Engines, CIDR 2022
Work done in collaboration with HPE



Smart Disaggregated Memory (Farview)

SELECTT.3,S.b MT.a,550) Compute node ,Smart disaggregated memory
FROMT, S bd Query thread: JA— * Operator offloading
WHERE T.ic = S.id : $ 7rass0) I | 7rarid0re-50(T))
ANDT.c>50 AND S.d<2012;  ALaLid(OLe=50(T))  Msp,sia(0s.a<2012(5)) 1 = . ' 755065 ae2012(S)

. 5 .
SELECT R.d, S.b TTRd,s.() — | Operator offloading Buffer
FROMR, 5 b ““"F"'-':: nn;:_le | TpaRid(ORa=3.14(R) Cache
WHERE R.id = 5.id Mﬂ: :‘-"Ts_a,s_m{ﬂ'gmzmt’ﬂ)
AND R.a=3.14 AND S.a <> 2012; AR Rid(ORa=2.14(R)) Tsp5ia(Os.a202005))  |F :R“‘r“{} ‘essesssssssssasecnsnanca

24



FleetRec: bridging CPUs, GPUs and FPGAs

* Using existing server Flexible combination
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Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou,
Ce Zhang, Gustavo Alonso: FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters. KDD
2021
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Vector search acceleration
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et al. VLDB 2025
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Key message

If the data moves, it has to be processed
along the data path



A database example
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Data Flow Architectures for Data Processing on Modern Hardware. Lerner and Alonso, ICDE 2024
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The research agenda

e What is the most suitable execution model?
e Streaming?

* What is the interface to computational storage?
* How much compute should move to storage or the data path?

 What processing fits better where?
e Storage, network, memory, interconnects

* Which operators can be moved to the pipeline?
* Relational, statistical, sampling, summarization, compression, encryption ...

* What are the end-to-end effects and performance?
* How to orchestrate query execution on such a pipeline?



Also to improve storage

* StreamDeDup

* Deduplication for the
cloud

* Transparent intermediate
layer implemented
through in-network
FPGAs

* Deduplicates pages at
large scales without
involving the CPU or the
storage layer

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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SLASH (joint work with AMD Research)
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NETWORK/INTERCONNECT/STORAGE 32



Prototyping the required hardware
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Network stack (Balboa
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Conclusions

* Data shipping is just too expensive

* Too much data
* Too much overhead on the system stack
* Energy and resource inefficient

* Near data processing at all levels of the hardware stack
* Not everything has to/should be done by the CPU

e Starting with Storage
* Reduce data movement
* Improve processing efficiency
* Specialize
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