
T-Head Confidential

Hawkeyes：Addressing Weak Memory Order in

Program Migration Based on Instruction Windows

—— Presenter: Zhangqi Zhu

T-Head Confidential1. WMM bugs —— A basic example

Thread 1

void
thread1(void)
{
 global a = 1;

 global b = 1;

 …

}

void
thread2(void)
{
 while (b == 0)
 continue;

 assert(a == 1);

 …
}

store

store

Core 1

Thread 2

load

load

Core 2

Running on x86：

• Thread 1 performs two store operations in order.

• The update 'a = 1' is visible before 'b = 1' to

Thread 2

• Thread2 will not encounter an assertion error

Running on Arm：

• The two store operations from Thread 1 may be

reordered

• Allowing 'b=1' to execute and update before 'a=1'

• Thread 2 could encounter an assertion error

T-Head Confidential

TYPE X86 (TSO) ARM (WMM)

Loads reordered after loads N Y

Loads reordered after stores N Y

Stores reordered after stores N Y

Stores reordered after loads Y Y

• x86 — TSO(Total Store Order) • Arm — WMM(Weak Memory Model)

• Incorporates a FIFO-based write buffer for processors

• Preserving the order of write instructions while enabling

direct reading instructions from the write buffer

• Each processor possesses its complete memory copy,

allowing independent reading and writing

• Permitting reordering as the writes propagate

2. Difference between x86 and Arm memory models

T-Head Confidential
• x86 — TSO(Total Store Order) • Arm — WMM(Weak Memory Model)

3. Advantages and disadvantages

Advantages:

• Offers a simpler programming model for multi-threading,

enhancing portability across different systems and architectures.

Disadvantages：

• TSO relies on relatively complex hardware architectures to

enforce memory synchronization, which can add overhead.

• In systems with high parallelism, TSO may result in an excessive

number of memory synchronization operations, potentially

degrading performance.

Advantages:

• Can deliver higher performance, fully utilizing the throughput of the

ALU.

Disadvantages：

• Requires developers to explicitly manage memory synchronization

through memory barrier instructions, making it challenging to

write correct and efficient multithreaded code.

T-Head Confidential4. How to solve the WMM bugs —— Memory barrier insertion

Barrier Type Example Functions

Load-Load barrier Ldr ; dmb ld ; Ldr
Ensure read memory instruction issued in

strict order

Store-Store Barrier Str ; dmb st ; Str
Ensure write memory instruction issued in

strict order

Load-Store Barrier Ldr ; dmb ish ; Str
Ensure load instruction issued prior to store

instruction

Store-Load Barrier Str ; dmb ; Ldr
Ensure store instruction issued prior to

load instruction

 Memory Barrier is a type of instruction that imposes a strict ordering constraint on how the CPU and compiler perform memory

operations, preventing instruction reordering before or after the barrier instruction.

 Can be realized through hardware mechanisms, software solutions, or a combination.

 Memory barrier need to be added by the application developers. Those who have long been developing under the TSO model

may find it challenging to identify potential WMM issues in the code when migrating programs to ARM architecture.

 WMM bugs are sporadic and dependent on specific business use cases, making them difficult to locate and identify through

testing. —— We need an automated tool!

void thread1(void)
{
 global a = 1;

 global b = 1;

 …
}

Memory barrier

T-Head Confidential
5. Existing solutions

 Expert

• Rely on human experts to manually introduce any additional barriers in the code base

• Neither practical or scalable

 Atomic Transformation

• Convert global variables to atomics or confining them with robust locks and memory barriers

• Really poor performance.

 Dynamic Data Race Detection (Tsan/C11 Tester)

• Check variable locations in race conditions for atomic transformations

• Does not fully match WMM bugs

 Atomig

• Converts the program into LLVM IR and completes automated memory barrier insertion and modification to LLVM IR

through pattern matching, analyzing explicit and implicit synchronization patterns

• Still a relatively high false positive rate and miss rate

T-Head Confidential
6. Our solution —— Hawkeyes

• Hawkeyes dynamically detects memory access conflict during program runtime and gathers memory

access information and thread details.

• It then analyzes micro-instruction differences between two conflicting memory access instructions to

determine if they are in the same instruction window.

• Hawkeyes will ultimately generate a report at the source code level, containing information about the

locations at risk for WMM bugs and recommendations for the types of memory barriers to insert.

T-Head Confidential
7. Design 1：Memory Access Conflict Detection

Memory access conflict:

• Happens when multiple threads access the same memory space during program execution (where each

thread may have multiple memory operations accessing the same shared memory).

• WMM bugs may occur only when two threads each have memory operations accessing two same

shared memory.

Detection Workflow:

• Hawkeyes employs instrumentation techniques during the program

compilation to capture memory access information.

• Hawkeyes utilizes shadow memory to record runtime state information

for the instrumented program.

• The stored state information includes observed synchronization events,

locks held by each thread, current memory locations, and other system

details

T-Head Confidential
8. Design 2：Instruction Window Analysis

Instruction windows:

• The instruction window, constitutes a vital hardware structure widely employed in contemporary processors.

• Pairs of instructions, with a number of micro-instructions falling outside the size of the instruction window, will

not encounter any disorder in their execution order.

Analysis Workflow:

• Determine the Instruction window size

• Sort the mop list of each thread

• Determine the out-of-order problem

• If two adjacent memory operations are within the same

instruction window, then it might encounter instruction

execution reordering issues.

• Determine the WMM bugs

• For two sets of memory operations in different threads

accessing the same two memory access conflict locations,

if they both suffer from out-of-order problem, WMM bugs

may occur.

T-Head Confidential
9. Evaluation：Recall ratio and Precision ratio

Recall Ratio Analysis:

• We compare the positions where the mentioned approaches insert

memory barriers with the original locations of memory barriers in the

source code.

• Experts, Atomic Trans, and Hawkeyes exhibit covers all potential

locations.

• Atomig achieves a coverage range of only 50.0%-75.0% for WMM bugs

Precision Ratio Analysis:

• We compare the positions where memory barriers were inserted in each

approach with the potential locations where WMM errors may occur.

• Hawkeyes improves the average PP of insertion by 127.1% and 75.3%

compared to Atomig and Atomic Trans through inserting memory barriers

only when:

• there is a potential for memory access conflicts

• two instructions within the same instruction window

• there are not any existing memory barrier

T-Head Confidential
10. Evaluation：Program Performance

Program Performance Analysis:

• Hawkeyes reduces the average program runtime compared to Atomig and

Atomic Trans by 6.4% and 13.5%, respectively.

• In contrast to manual memory barrier addition, Hawkeyes incurs only a

marginal increase(e.g. 5.6%)

• The performance improvement can be attributed to the reduction in the

number of memory barrier insertions.

• On average, Hawkeyes has notably decreased the number of memory

barrier insertions by 37.1% compared to Atomig and Atomic Trans.

T-Head Confidential

Thanks

Contact Information：zhuzhangqi.zzq@alibaba-inc.com

