
Data Management for
Cost-Efficient ML

Ana Klimovic

EuroSys CHEOPS
April 2024

ML training is increasingly expensive

2Source: Ben Cottier, 2023. https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems

ML training is increasingly data hungry

3

At Meta, ML data storage and data ingestion bandwidth grew over 2x and 4x in 2 years.

Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.

2020 2022

How can we reduce the cost of ML?

4

Resource efficiency

Data efficiency Model efficiency

How can we reduce the cost of ML?

5

Resource efficiency

Data efficiency Model efficiency
à train on the most

important data

à maximize GPU/TPU
utilization

How can we reduce the cost of ML?

6

Resource efficiency

Data efficiency Model efficiency
à train on the most

important data

Need to optimize how
we store & ingest data!

à maximize GPU/TPU
utilization

How can we reduce the cost of ML?

7

Resource efficiency

Data efficiency Model efficiency
à train on the most

important data

Need to optimize how
we store & ingest data!

à maximize GPU/TPU
utilization

What hinders high GPU/TPU utilization?

8

• Feeding GPUs/TPUs with input data is often a bottleneck

Input data processing for ML

Training / ServingRaw Data Data records

Before we can feed training data to a model, we need to preprocess data.

9

Input data processing for ML

Training / ServingRaw Data Data records

Offline
preprocessing
• Extract features
• Clean data
• Validate data
• Normalize data

Before we can feed training data to a model, we need to preprocess data.

10

Input data processing for ML

Training / ServingRaw Data Data records

Online
preprocessing
• Filter features
• Sample elements
• Randomly augment
• Shuffle & batch

Offline
preprocessing
• Extract features
• Clean data
• Validate data
• Normalize data

Before we can feed training data to a model, we need to preprocess data.

11

Input data processing for ML

Training / ServingRaw Data Data records

Online
preprocessing
• Filter features
• Sample elements
• Randomly augment
• Shuffle & batch

Before we can feed training data to a model, we need to preprocess data.

12

“Last mile”
data processing

Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD

13

Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD

14

• Feeding data-hungry GPUs/TPUs is challenging
• Input data processing on host CPU is often a bottleneck

Bottleneck

Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD

15

Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD

16

• At Google, data processing consumes ~30% of compute time in training jobs [1]
• At Meta, data processing consumes more power than training for some jobs [2]

[1] Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

[2] Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.

https://vldb.org/pvldb/vol14/p2945-klimovic.pdf
https://dl.acm.org/doi/10.1145/3470496.3533044

tf.data: ML input data processing framework

• API provides generic operators that can be composed & parameterized:
• Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

• Runtime efficiently executes input pipelines by applying:

• Software pipelining and parallelism

• Static optimizations (e.g., operator fusion)

• Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

17
Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

https://vldb.org/pvldb/vol14/p2945-klimovic.pdf

tf.data: ML input data processing framework

• API provides generic operators that can be composed & parameterized:
• Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

• Runtime efficiently executes input pipelines by applying:

• Software pipelining and parallelism

• Static optimizations (e.g., operator fusion)

• Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

18
Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

read(file) map(parse) filter(cond) map(crop) shuffle() batch() prefetch()

https://vldb.org/pvldb/vol14/p2945-klimovic.pdf

tf.data: ML input data processing framework

• API provides generic operators that can be composed & parameterized:
• Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

• Runtime efficiently executes input pipelines by applying:

• Software pipelining and parallelism

• Static optimizations (e.g., operator fusion)

• Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

19
Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

read(file) map(parse) filter(cond) map(crop) shuffle() batch() prefetch()

https://vldb.org/pvldb/vol14/p2945-klimovic.pdf

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)

2020

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)

2121

read data from storage

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)

2222

apply user-defined preprocessing

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)

2323

batch data for training efficiency

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

242424

overlap data processing and loading

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

2525

train model with tf.data dataset

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

262626

tf.data runtime applies optimizations
to the input pipeline under the hood

Software parallelism & pipelining

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

27

tf.data.AUTOTUNE

2727

Hill-climbing algorithm tunes CPU/mem
allocations to minimize output latency,

modelled by M/M/1/k queue at each iterator

tf.data runtime applies optimizations
to the input pipeline under the hood

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

28

tf.data.AUTOTUNE

2828

Autotuning can also be cast as an integer linear program.

tf.data runtime applies optimizations
to the input pipeline under the hood

Michael Kuchnik et al. Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines. MLSys’22.

Autotuning optimizes the throughput of the input pipeline given a
fixed amount of CPU/memory on the host training machine.

What if we don’t have enough host resources to avoid data stalls?

29

CPU GPU/TPUDisk/SSD

How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node.

30

Training jobs benefit differently
when given more CPU for data
processing per accelerator core

à Ideal resource allocation depends on the model and input pipeline

Solution: disaggregate input data processing

• Independently scale resources for input data processing & model training

31

CPU GPU/TPUCPU

Solution: disaggregate input data processing

• Independently scale resources for input data processing & model training

32

CPU GPU/TPUCPU

Remote
CPU

Remote
CPU

Remote
CPU

Remote
CPU

Remote
CPU

Solution: disaggregate input data processing

33

• Independently scale resources for input data processing & model training
• Approach taken at Google (tf.data service), Meta (DPP), …

tf.data service: disagg ML data processing

Client

Cloud storage
(source data)

34

Training
Job

tf.data service: disagg ML data processing

Client

Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

Users register ML data processing job
with the tf.data service dispatcher

35

Training
Job

Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

36

Worker

Worker

Cloud storage
(source data)

Worker

The dispatcher distributes data processing
across remote workers

Client

tf.data service: disagg ML data processing

Training
Job

Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

37

Worker

Worker

Cloud storage
(source data)

Worker

Client

Clients fetch processed data from workers
in time for the next training step

tf.data service: disagg ML data processing

Training
Job

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()

model = ...
model.fit(dataset, epochs=10)

383838

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

393939

register input pipeline with dispatcher

Benefits of disaggregated ML data processing

Remove input bottlenecks

40

Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup

Training time speedup

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.

https://anakli.inf.ethz.ch/papers/tfdata_service_SoCC23.pdf

Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup, 89x cost reduction

Training time speedup Cost reduction

TPUs are expensive.
It’s worth using extra

CPUs for input data proc
to ensure TPUs don’t stall!

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.

https://anakli.inf.ethz.ch/papers/tfdata_service_SoCC23.pdf

ML data processing as a service

Worker

...

DispatcherClient

Metadata
Store

Worker

Worker

Cloud storage
(source data)

43

DATA SERVICE

The dispatcher autoscales workers
à just enough workers to avoid data stalls

ML data processing as a service

Client 0.2
Client 0.1

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job 0

Job m

Multi-tenant

44

DATA SERVICE

Can we leverage a global view of data processing across jobs?

Client 0.0

Cachew: ML data processing as a service

Client 0.2
Client 0.1

Client 0.0

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cache
(source

&
preprocessed

data)

Cloud storage
(source data)

Job 0

Job m

Cache
cluster
(source &

preprocessed
data)

The dispatcher decides which datasets to
cache in fast, distributed storage

45

DATA SERVICE

https://github.com/eth-easl/cachew

Dan Graur

Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandu Thekkath, Ana Klimovic. Cachew: ML Input Data Processing as a Service, USENIX ATC 2022.

https://github.com/eth-easl/cachew
https://anakli.inf.ethz.ch/papers/cachew_atc22.pdf

Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

46

Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

47

Caching does not always improve performance…

• Input data reading may not be the training bottleneck

• Transformed dataset may be much larger than source dataset, saturing cache I/O bandwidth

• Reusing non-deterministically transformed data can hurt ML model accuracy (removes randomness)
Input data processing may not be the training bottleneck

• Transformed dataset may be very large, saturating I/O read bandwidth
• Reusing non-deterministically transformed data can hurt accuracy (removes randomness

that can help a model regularize)

Autocaching policy

48

Worker

...

DispatcherClient m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job m

CACHEW SERVICE

How/when to efficiently cache and re-use (transformed) datasets?

Cache
cluster
(source &

preprocessed
data)

Cache
cluster
(source &

preprocessed
data)

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

494949

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

505050

user-defined preprocessing

import tensorflow as tf

def preprocess(record):
 ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.autocache().map(parse).filter(filter_func).autocache().map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

515151

Cachew users can apply autocache ops to hint where
it is viable (from an ML perspective) to cache/reuse data

Cachew will decide which autocache op is an optimal
dataset to cache from a throughput perspective.
Caching will only be applied at 1 location, if at all.

52

● During first epoch, at each autocache op, infer compute vs. cache read throughput:

● Cachew selects the autocache op with max throughput (i.e. min TotalCacheExecTime)

● Compare with the throughput of pure compute (TotalComputeTime)

● Select option with highest throughput → at most one autocache selected

(M elements produced) (N elements produced)
…

Autocaching policy

Autocaching policy evaluation

53

Pure computeCache after read Cache at end

Per-batch data preprocessing time (ms)

Measure batch time with synthetic input data pipeline that augments source data by 2.5X.

Future directions for ML data services

54

How to leverage knowledge across jobs to improve data and model quality?

• Training data discovery service
• Recommend “relevant” source datasets used by other jobs

• Data auto-augmentation service
• Recommend data augmentations

• Data importance service
• Recommend training examples that are most relevant for the task at hand

How can we reduce the cost of ML?

55

Resource efficiency

Data efficiency Model efficiency
à train on the most

important data

à maximize GPU/TPU
utilization

How can we reduce the cost of ML?

56

Resource efficiency

Data efficiency Model efficiency
à train on the most

important data

à maximize GPU/TPU
utilization

57

MNIST CIFAR ImageNet

Real datasets are often dynamic

58

Data shiftsMore data collected Data needs to be deleted

à ML models need to be updated!

How much can retraining help?

59

Retraining Method Purchase Through Rate
Increase

No Retraining 0

Weekly Retraining +2.5%

Daily Retraining +20.3%

Example: online recommendations for GrubHub food delivery in 2021

Online Learning for Recommendations for GrubHub, Alex Egg, 2021.

https://arxiv.org/abs/2107.07106

The cost of model retraining

Is proportional to:
~ How often retrain
~ How many data samples use for training

60

How to update models cost-efficiently?

•When to trigger retraining?

•What data to train on?

61

Today, ML practitioners
decide ad-hoc!

M. Od: platform for ML on dynamic data

• Pluggable training triggering + data selection policies

• Manages dynamic datasets (and associated metadata) at scale,
with sample-level darta selection

• Orchestrates training jobs

62

https://github.com/eth-easl/modyn
Maximilian BötherTowards a Platform and Benchmark Suite for Model Training on Dynamic Datasets. EuroMLSys’23.

https://github.com/eth-easl/modyn
https://anakli.inf.ethz.ch/papers/MLonDynamicData_EuroMLSys23.pdf

Modyn goals and challenges

63

Fast sample-level
data selection
during training

Continuous
model life-cycle

orchestration

Ease of use and
extensibility to
ease adoption

64

New SamplesModynInput Data
Stream

Output
Model
Stream

Supervisor
Server

Data
Storage

Selector

Model
StorageEvaluator

①

New Samples
Training
Request②

⑥

③

Trainer
ServerList of keys for Trigger④

⑤Sample Payloads

Trained Model
⑦Trained Model

EngineerPipeline⓪

Modyn system architecture

Workers

Training Throughput for Criteo RecSystem

65

Near-local throughput, even for memory-bound training.

Modyn
Sequential, local reads

Th
ro

ug
hp

ut

Maximilian Böther, Viktor Gsteiger, Ties Robroek, Ana Klimovic. Modyn: A Platform for Model Training on Dynamic Datasets With Sample-Level Data Selection. 2023

https://arxiv.org/abs/2312.06254

Ongoing work on data efficiency

• Data selection policy exploration

• Model triggering policy exploration

• Exploring the interplay between the above two

• Importance-aware data placement in storage hierarchy

66

Benchmark suite for ML on dynamic data

67

Text
Classification

Autonomous
Driving

Weather
Forecasting

Recommender
Systems

Thanks to great collaborators J

Dan Graur

Xianzhe MaChandu Thekkath Jiří Šimša

Maximilian Böther Foteini Strati

Derek Murray

Viktor Gsteiger Ties Robroek

Pinar Tözün

Disaggregate input data processing to eliminate
data stalls and maximize training throughput

Train models efficiently on dynamic datasets

à When to trigger training?
à What data to train on?

ML training is increasingly data hungry & expensive

https://github.com/eth-easl/cachew https://github.com/eth-easl/modyn

Client 0.2
Client 0.1

Client 0.0

...

Worker

...

Dispatcher

Client m
Metadata
Store

Worker

Worker

Cache
(source

&
preprocessed

data)

Cloud storage
(source data)

Job 0

Job m

Cache
cluster
(source &

preprocessed
data)

CACHEW SERVICE

How to reduce the cost of ML training?

https://github.com/eth-easl/cachew
https://github.com/eth-easl/modyn

