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ML training is increasingly expensive

2Source: Ben Cottier, 2023. https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems  

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems


ML training is increasingly data hungry
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At Meta, ML data storage and data ingestion bandwidth grew over 2x and 4x in 2 years.

Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.

2020 2022



How can we reduce the cost of ML?
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What hinders high GPU/TPU utilization? 

8

• Feeding GPUs/TPUs with input data is often a bottleneck



Input data processing for ML

Training / ServingRaw Data Data records

Before we can feed training data to a model, we need to preprocess data.
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“Last mile” 
data processing



Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD
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Input processing impacts training time & cost

CPU GPU/TPUDisk/SSD
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• Feeding data-hungry GPUs/TPUs is challenging
• Input data processing on host CPU is often a bottleneck

Bottleneck



Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD
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Input processing consumes high CPU/energy

CPU GPU/TPUDisk/SSD
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• At Google, data processing consumes ~30% of compute time in training jobs [1]
• At Meta, data processing consumes more power than training for some jobs [2]

[1] Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.

[2] Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.

https://vldb.org/pvldb/vol14/p2945-klimovic.pdf
https://dl.acm.org/doi/10.1145/3470496.3533044


tf.data: ML input data processing framework

• API provides generic operators that can be composed & parameterized:
• Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

• Runtime efficiently executes input pipelines by applying:

• Software pipelining and parallelism

• Static optimizations (e.g., operator fusion)

• Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)
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Derek G. Murray, Jiří Šimša, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)
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read data from storage



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)
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apply user-defined preprocessing



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)

model = ...
model.fit(dataset, epochs=10)
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batch data for training efficiency



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

242424

overlap data processing and loading



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)
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train model with tf.data dataset



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)

262626

tf.data runtime applies optimizations 
to the input pipeline under the hood

Software parallelism & pipelining



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord", num_parallel_readers=Z)
dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)

model = ...
model.fit(dataset, epochs=10)
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tf.data.AUTOTUNE

2727

Hill-climbing algorithm tunes CPU/mem 
allocations to minimize output latency, 

modelled by M/M/1/k queue at each iterator

tf.data runtime applies optimizations 
to the input pipeline under the hood



import tensorflow as tf
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  ...
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dataset = dataset.map(preprocess, num_parallel_calls=Y)
dataset = dataset.batch(batch_size=32)
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tf.data.AUTOTUNE

2828

Autotuning can also be cast as an integer linear program. 

tf.data runtime applies optimizations 
to the input pipeline under the hood

Michael Kuchnik et al. Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines. MLSys’22. 



Autotuning optimizes the throughput of the input pipeline given a 
fixed amount of CPU/memory on the host training machine.

What if we don’t have enough host resources to avoid data stalls?
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CPU GPU/TPUDisk/SSD



How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node. 

30

Training jobs benefit differently 
when given more CPU for data 
processing per accelerator core

à Ideal resource allocation depends on the model and input pipeline



Solution: disaggregate input data processing

• Independently scale resources for input data processing & model training
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CPU GPU/TPUCPU
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CPU GPU/TPUCPU

Remote 
CPU

Remote 
CPU
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CPU
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Solution: disaggregate input data processing
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• Independently scale resources for input data processing & model training
• Approach taken at Google (tf.data service), Meta (DPP), …



tf.data service: disagg ML data processing

Client

Cloud storage
(source data)

34

Training 
Job



tf.data service: disagg ML data processing

Client

Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

Users register ML data processing job 
with the tf.data service dispatcher
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Training 
Job



Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)

36

Worker

Worker

Cloud storage
(source data)

Worker

The dispatcher distributes data processing 
across remote workers

Client

tf.data service: disagg ML data processing

Training 
Job



Dispatcher

tf.data service

Metadata
Store

Cloud storage
(source data)
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Worker

Worker

Cloud storage
(source data)

Worker

Client

Clients fetch processed data from workers 
in time for the next training step

tf.data service: disagg ML data processing

Training 
Job



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()

model = ...
model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

393939

register input pipeline with dispatcher 



Benefits of disaggregated ML data processing

Remove input bottlenecks

40



Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup

Training time speedup

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.

https://anakli.inf.ethz.ch/papers/tfdata_service_SoCC23.pdf


Benefits of disaggregated ML data processing

Remove input bottlenecks à up to 110x speedup, 89x cost reduction

Training time speedup Cost reduction

TPUs are expensive.
It’s worth using extra 

CPUs for input data proc 
to ensure TPUs don’t stall!

Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.

https://anakli.inf.ethz.ch/papers/tfdata_service_SoCC23.pdf


ML data processing as a service 

Worker

...

DispatcherClient 

Metadata
Store

Worker

Worker

Cloud storage
(source data)
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DATA SERVICE

The dispatcher autoscales workers
à just enough workers to avoid data stalls



ML data processing as a service 

Client 0.2
Client 0.1

...

Worker

...

Dispatcher

Client m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job 0

Job m

Multi-tenant

44

DATA SERVICE

Can we leverage a global view of data processing across jobs?

Client 0.0



Cachew: ML data processing as a service 

Client 0.2
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Client 0.0
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...

Dispatcher
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The dispatcher decides which datasets to 
cache in fast, distributed storage
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DATA SERVICE

https://github.com/eth-easl/cachew

Dan Graur

Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandu Thekkath, Ana Klimovic. Cachew:  ML Input Data Processing as a Service, USENIX ATC 2022.

https://github.com/eth-easl/cachew
https://anakli.inf.ethz.ch/papers/cachew_atc22.pdf


Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?
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Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?
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Caching does not always improve performance…

• Input data reading may not be the training bottleneck

• Transformed dataset may be much larger than source dataset, saturing cache I/O bandwidth

• Reusing non-deterministically transformed data can hurt ML model accuracy (removes randomness) 
Input data processing may not be the training bottleneck

• Transformed dataset may be very large, saturating I/O read bandwidth
• Reusing non-deterministically transformed data can hurt accuracy (removes randomness 

that can help a model regularize)



Autocaching policy

48

Worker

...

DispatcherClient m

Metadata
Store

Worker

Worker

Cloud storage
(source data)

Job m

CACHEW SERVICE

How/when to efficiently cache and re-use (transformed) datasets?

Cache 
cluster
(source & 

preprocessed 
data)

Cache 
cluster
(source & 

preprocessed 
data)



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

494949



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
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user-defined preprocessing



import tensorflow as tf

def preprocess(record):
  ...

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.autocache().map(parse).filter(filter_func).autocache().map(rand_augment)
dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch()
dataset = dataset.distribute(dispatcher_IP)

model = ...
model.fit(dataset, epochs=10)

515151

Cachew users can apply autocache ops to hint where 
it is viable (from an ML perspective) to cache/reuse data

            
Cachew will decide which autocache op is an optimal 
dataset to cache from a throughput perspective. 
Caching will only be applied at 1 location, if at all.
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● During first epoch, at each autocache op, infer compute vs. cache read throughput:

● Cachew selects the autocache op with max throughput (i.e. min TotalCacheExecTime)

● Compare with the throughput of pure compute (TotalComputeTime)

● Select option with highest throughput → at most one autocache selected

(M elements produced) (N elements produced)
…

Autocaching policy



Autocaching policy evaluation

53

Pure computeCache after read Cache at end

Per-batch data preprocessing time (ms)

Measure batch time with synthetic input data pipeline that augments source data by 2.5X.



Future directions for ML data services
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How to leverage knowledge across jobs to improve data and model quality? 

• Training data discovery service
• Recommend “relevant” source datasets used by other jobs

• Data auto-augmentation service
• Recommend data augmentations

• Data importance service
• Recommend training examples that are most relevant for the task at hand 



How can we reduce the cost of ML?
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MNIST CIFAR ImageNet



Real datasets are often dynamic
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Data shiftsMore data collected Data needs to be deleted

à ML models need to be updated!



How much can retraining help? 
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Retraining Method Purchase Through Rate 
Increase 

No Retraining 0

Weekly Retraining +2.5%

Daily Retraining +20.3%

Example: online recommendations for GrubHub food delivery in 2021

Online Learning for Recommendations for GrubHub, Alex Egg, 2021.

https://arxiv.org/abs/2107.07106


The cost of model retraining 

Is proportional to: 
~ How often retrain
~ How many data samples use for training

60



How to update models cost-efficiently?

•When to trigger retraining?

•What data to train on?

61

Today, ML practitioners 
decide ad-hoc!



M.          Od: platform for ML on dynamic data

• Pluggable training triggering + data selection policies

• Manages dynamic datasets (and associated metadata) at scale, 
with sample-level darta selection

• Orchestrates training jobs

62

https://github.com/eth-easl/modyn
Maximilian BötherTowards a Platform and Benchmark Suite for Model Training on Dynamic Datasets. EuroMLSys’23.

https://github.com/eth-easl/modyn
https://anakli.inf.ethz.ch/papers/MLonDynamicData_EuroMLSys23.pdf


Modyn goals and challenges

63

Fast sample-level 
data selection 
during training

Continuous 
model life-cycle 

orchestration

Ease of use and 
extensibility to 
ease adoption
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New SamplesModynInput Data 
Stream

Output
Model
Stream

Supervisor 
Server

Data 
Storage

Selector

Model
StorageEvaluator

①

New Samples
Training
Request②

⑥

③

Trainer
ServerList of keys for Trigger④

⑤Sample Payloads

Trained Model
⑦Trained Model

EngineerPipeline⓪

Modyn system architecture



# Workers

Training Throughput for Criteo RecSystem
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Near-local throughput, even for memory-bound training.

Modyn
Sequential, local reads

Th
ro

ug
hp

ut

Maximilian Böther, Viktor Gsteiger, Ties Robroek, Ana Klimovic. Modyn: A Platform for Model Training on Dynamic Datasets With Sample-Level Data Selection. 2023

https://arxiv.org/abs/2312.06254


Ongoing work on data efficiency

• Data selection policy exploration

• Model triggering policy exploration

• Exploring the interplay between the above two

• Importance-aware data placement in storage hierarchy 
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Benchmark suite for ML on dynamic data
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Text
Classification

Autonomous
Driving

Weather
Forecasting

Recommender 
Systems



Thanks to great collaborators J 
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Derek Murray

Viktor Gsteiger Ties Robroek

Pinar Tözün



Disaggregate input data processing to eliminate 
data stalls and maximize training throughput

Train models efficiently on dynamic datasets

à When to trigger training? 
à What data to train on?

ML training is increasingly data hungry & expensive

https://github.com/eth-easl/cachew https://github.com/eth-easl/modyn
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CACHEW SERVICE

How to reduce the cost of ML training? 

https://github.com/eth-easl/cachew
https://github.com/eth-easl/modyn

