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ML training is increasingly expensive
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ML training is increasingly data hungry

At Meta, ML data storage and data ingestion bandwidth grew over 2x and 4x in 2 years.
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How can we reduce the cost of ML?

Resource efficiency

Data efficiency Model efficiency
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Resource efficiency = maximize GPU/TPU
utilization

Data efficiency

- train on the most
important data
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What hinders high GPU/TPU utilization?

* Feeding GPUs/TPUs with is often a bottleneck



Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data Training / Serving
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Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.
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Input data processing for ML

Before we can feed training data to a model, we need to preprocess data.

Raw Data Data records Training / Serving
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Input processing impacts training time & cost
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Input processing impacts training time & cost

* Feeding data-hungry GPUs/TPUs is challenging

flops

* Input data processing on host CPU is often a bottleneck
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Input processing consumes high CPU/energy
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Input processing consumes high CPU/energy

At Google, data processing consumes ~30% of compute time in training jobs [1]
At Meta, data processing consumes more power than training for some jobs [2]
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[1] Derek G. Murray, Jifi Sim&a, Ana Klimovic, lhor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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[2] Mark Zhao et al. “Understanding data storage and ingestion for large-scale deep recommendation model training”, ISCA 2022.
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tf.data: ML input data processing framework 1

» API provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

y 17
Derek G. Murray, Jiti Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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tf.data: ML input data processing framework 1F

* API| provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

read(file) map (parse) filter(cond) map(crop) shuffle() batch() prefetch()

M 18
Derek G. Murray, Jiti Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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tf.data: ML input data processing framework 1F

* API| provides generic operators that can be composed & parameterized:

* Consists of stateless datasets (to define pipeline) and stateful iterators (to produce elements)

read(file) map (parse) filter(cond) map(crop) shuffle() batch() prefetch()

* Runtime efficiently executes input pipelines by applying:
* Software pipelining and parallelism

» Static optimizations (e.g., operator fusion)

« Dynamic optimizations (autotuning parallelism & prefetch buffer sizes)

M 19
Derek G. Murray, Jiti Simsa, Ana Klimovic, Ihor Indyk: “tf.data: A Machine Learning Data Processing Framework”. VLDB 2021.
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch size=32)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRec

dataset = dataset.map(pPeprocess)
dataset = dataset.batch(batch_size=32)
model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.T

dataset = dataset.m

dataset = dataset.bPlch(batch_size=32)
dataset = dataset.prefetch(buffer_size=X)
model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch(buffer_size=X)

model = ...
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord”, num_parallel readers=Z7)

dataset = dataset.map(preprocess, num_parallel calls=Y)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch(buffer_size=X)

model = ... Software parallelism & pipelining

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord”, num_parallel readers=Z7)
dataset = dataset.map(preprocess, num_parallel calls=Y)
dataset = dataset.batch(batch_size=32) k\\\\\
dataset = dataset.prefetch(buffer_size=X)
tf.data.AUTOTUNE
model =
model.fit(dataset, epochs=16) Hill-climbing algorithm tunes CPU/mem

allocations to minimize output latency,
modelled by M/M/1/k queue at each iterator

27



import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord”, num_parallel readers=Z7)
dataset = dataset.map(preprocess, num_parallel calls=Y)
dataset = dataset.batch(batch_size=32) K\\\\\ ///f
dataset = dataset.prefetch(buffer_size=X)

tf.data.AUTOTUNE
model =

model.fit(dataset, epochs=10)

Autotuning can also be cast as an integer linear program.

Michael Kuchnik et al. Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning Data Pipelines. MLSys'22.
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Autotuning optimizes the throughput of the input pipeline given a
fixed amount of CPU/memory on the host training machine.

What it we don’t have enough host resources to avoid data stalls?
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Epoch time (s)

How much CPU/RAM to provision per GPU/TPU?

It is hard to determine the right resource ratio for a ML training node.

- ldeal resource allocation depends on the model and input pipeline

--#- ResNet-50 (GPU) w/ ImageNet
—»— EfficientNetV2 (TPU) w/ ImageNet

—e— RetinaNet (TPU) w/ COCO

——l

4 6 8 10
CPU Cores per GPU / TPU accelerator

12

Training jobs benefit differently
when given more CPU for data

processing per accelerator core

30



Solution: disaggregate input data processing

* Independently scale resources for input data processing & model training
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Solution: disaggregate input data processing

* Independently scale resources for input data processing & model training
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olution: disaggregate input data processing

* Independently scale resources for input data processing & model training
 Approach taken at Google (tf.data service), Meta (DPP), ...

A case for disaggregation of ML data processing Understanding Data Storage and Ingestion for Large-Scale Deep

Recommendation Model Training

Andrew Audibert Yang Chen Dan Graur Ana Klimovic Jif{ Simsa Industrial Product*
Google Google ETH Zurich ETH Zurich Google . . .
Mark Zhao®, Niket AgarwalT, Aarti Basant', Bugra Gedik', Satadru Pan’, Mustafa Ozdal’, Rakesh
Chandramohan A. Thekkath Komuravellif, Jerry Pan’, Tianshu Bao®, Haowei Luf, Sundaram Narayanan', Jack La.ngmanT,
Google Kevin Wilfong', Harsha Rastogi', Carole-Jean Wu', Christos Kozyrakis*, Parik Pol’
Abstract To enable high utilization of ML hardware, Google built TMeta, *Stanford University

Machine Learning (ML) computation requires feeding in-
put data for the models to ingest. Traditionally, input data
processing happens on the same host as the ML computa-
tion [8, 25]. The input data processing can however become
a bottleneck of the ML computation if there are insufficient
resources to process data quickly enough. This slows down
the ML computation and wastes valuable and scarce ML hard-
ware (e.g. GPUs and TPUs) used by the ML computation.

In this paper, we present ff.data service, a disaggregated
input data processing service built on top of tf.data. Our work
goes beyond describing the design and implementation of
a new system which disaggregates preprocessing from ML
computation and presents: (1) empirical evidence based on
production workloads for the need of disaggregation, as well
as quantitative evaluation of the impact disaggregation has on
the performance and cost of production workloads, (2) bene-
fits of disaggregation beyond horizontal scaling, (3) analysis
of tf.data service’s adoption at Google, the lessons learned
during building and deploying the system and potential future
lines of research opened up by our work.

We demonstrate that horizontally scaling data processing
using tf.data service helps remove input bottlenecks, achiev-
ing speedups of up to 110x and job cost reductions of up to
89x. We further show that tf.data service can support compu-
tation reuse through data sharing across ML jobs with iden-

and open-sourced the tf.data framework [25]. tf.data provides
an efficient runtime to execute ML input data pipelines and a
convenient API to express input data transformations. Since
its launch in 2017, tf.data has grown in adoption to become
the predominant solution for data ingestion and processing of
ML computations at Google. All Google-based submissions
to the ML Perf training competition [22] in recent years have
relied on tf.data to achieve high performance. The framework
is also widely used by open-source Tensorflow [1] programs.

However, tf.data could not meet the needs of all Tensorflow
programs. The original design colocated data ingestion and
processing with the ML computations. For some Tensorflow
programs, host resources used for colocated data processing
(CPU, RAM, and I/O bandwidth) became the bottleneck, leav-
ing expensive ML hardware underutilized. This increases the
end-to-end execution time and cost of ML jobs.

The fundamental challenge is that ML jobs have a wide
spectrum of CPU and memory requirements, which make it
impossible to right-size host CPU and memory resources (for
data processing) colocated with specialized ML accelerators
(for ML computations). Evidence of this is shown in Fig-
ure 1. By pre-provisioning colocated preprocessing resources,
a one-size-fits-all resource deployment is imposed on ML
preprocessing which is only optimal for a narrow subset of all
potential ML jobs. Most jobs will either end up using a frac-

ABSTRACT

Datacenter-scale Al training clusters consisting of thousands of
domain-specific accelerators (DSA) are used to train increasingly-
complex deep learning models. These clusters rely on a data storage
and ingestion (DSI) pipeline, responsible for storing exabytes of
training data and serving it at tens of terabytes per second. As
DSAs continue to push training efficiency and throughput, the DSI
pipeline is becoming the dominating factor that constrains the over-
all training performance and capacity. Innovations that improve
the efficiency and performance of DSI systems and hardware are
urgent, demanding a deep understanding of DSI characteristics and
infrastructure at scale.

This paper presents Meta’s end-to-end DSI pipeline, composed
of a central data warehouse built on distributed storage and a Data
PreProcessing Service that scales to eliminate data stalls. We char-
acterize how hundreds of models are collaboratively trained across
geo-distributed datacenters via diverse and continuous training
jobs. These training jobs read and heavily filter massive and evolv-
ing datasets, resulting in popular features and samples used across
training jobs. We measure the intense network, memory, and com-
pute resources required by each training job to preprocess samples
during training. Finally, we synthesize key takeaways based on our
production infrastructure characterization. These include identify-
ing hardware bottlenecks, discussing opportunities for heteroge-
neous DSI hardware, motivating research in datacenter scheduling
and benchmark datasets, and assimilating lessons learned in opti-
mizing DSI infrastructure.

KEYWORDS

Machine learning systems, databases, distributed systems, data
ingestion, data storage

ACM Reference Format:

Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean
W, Christos Kozyrakis, Parik Pol. 2022. Understanding Data Storage and
Ingestion for Large-Scale Deep R dation Model Training: Industrial
Product. In The 49th Annual International Symposium on Computer Architec-
ture (ISCA °22), June 18-22, 2022, New York, NY, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3470496.3533044

1 INTRODUCTION

Domain-specific accelerators (DSAs) for deep neural networks
(DNNs) have become ubiquitous because of their superior perfor-
mance per watt over traditional general purpose processors [40].
Industry has rapidly embraced DSAs for both DNN training and in-
ference. These DSAs include both traditional technologies, such as
GPUs and FPGAs, as well as application-specific integrated circuits
(ASICs) from, e.g., Habana [37], Graphcore [45], SambaNova [67],
Tenstorrent [74], Tesla [75], AWS [23], Google [40], and others.
DSAs are increasingly deployed in immense scale-out systems to
train increasingly-complex and computationally-demanding DNNs
using massive datasets. For example, the latest MLPerf Training
round (v1.1) [56] contains submissions from Azure and NVIDIA us-
ing 2048 and 4320 A100 GPUs, respectively, whereas Google submit-
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tf.data service: disagg ML data processing
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Cloud storage
(source data)
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tf.data service: disagg ML data processing

Users register ML data processing job

with the tf.data service dispatcher
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tf.data service: disagg ML data processing

The dispatcher distributes data processing

across remote workers
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tf.data service: disagg ML data processing

Clients fetch processed data from workers
in time for the next training step

tf.data service \
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch size=32)

dataset = dataset.prefetch()

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")
dataset = dataset.map(preprocess)

dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)

39



Benefits of disaggregated ML data processing

Remove input bottlenecks



Benefits of disaggregated ML data processing

Remove input bottlenecks = up to 110x speedup

Training time speedup
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Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.
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Benefits of disaggregated ML data processing

Remove input bottlenecks = up to 110x speedup, 89x cost reduction

Training time speedup Cost reduction
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Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiri Simsa, Chandu Thekkath. tf..data service: A case for disaggregating ML input data processing, SoCC 2023.
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ML data processing as a service

|
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The dispatcher autoscales workers

- just enough workers to avoid data stalls
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ML data processing as a service

Can we leverage a global view of data processing across jobs?

Client 0.2 /
Client 0.1

Job 0 Client 0.0
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Cachew: ML data processing as a service

The dispatcher decides which datasets to
cache in fast, distributed storage

Client 0.2
Client 0.1 DATA SERVICE \
Job 0 Client 0.0 =
o P W } I
\ Worker ). S
e D - Cache
. \ Dispatcher $J } cluster
e Worker )\ v/
. /‘ = VA (source &
etadata . Y d
— == i
ient m = SN ata
Jobm @ __________________________ (J }(
Dan Graur K Worker J ™ %) /

0 https://github.com/eth-easl/cachew

Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandu Thekkath, Ana Klimovic. Cachew: ML Input Data Processing as a Service, USENIX ATC 2022.

Cloud storage
(source data)
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https://anakli.inf.ethz.ch/papers/cachew_atc22.pdf

Challenges for ML data processing service

1. How to efficiently for input data processing?
2. How/when to efficiently (transformed) datasets?



Challenges for ML data processing service

1. How to efficiently autoscale resources for input data processing?
2. How/when to efficiently cache and re-use (transformed) datasets?

Caching does not always improve performance...

 Input data reading may not be the training bottleneck
« Transformed dataset may be much larger than source dataset, saturing cache 1/0O bandwidth

« Reusing non-deterministically transformed data can hurt ML model accuracy (removes randomness)

47



Autocaching policy

How/when to efficiently cache and re-use (transformed) datasets?
CACHEW SERVICE \

Jobm {

Client m
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")

dataset = dataset.map(parse).filter(filter func).map(rand_augment)
dataset = dataset.batch(batch size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecord@taset(".. .tfrecord")

dataset = dataset.map(parse).filter(filter_func).map(rand_augment)
dataset = dataset.batch(batch_size=32)

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

model = ...

model.fit(dataset, epochs=10)
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import tensorflow as tf

def preprocess(record):

dataset = tf.data.TFRecordDataset(".../*.tfrecord")

dataset = dataset.autocache().map(parse).filter(filter func).autocache().map(rand_augment)
dataset = dataset.batch(batch_si I

dataset = dataset.prefetch()

dataset = dataset.distribute(dispatcher_ IP)

Cachew users can apply autocache ops to hint where

model = ... it is viable (from an ML perspective) to cache/reuse data
model.fit(dataset, epochs=10)

Cachew will decide which autocache op is an optimal
dataset to cache from a throughput perspective.
Caching will only be applied at 1 location, if at all.

51



policy

e During first epoch, at each op, infer compute vs. cache read throughput:
TotalComputeTime
ye
r B
ReadFrom —> 4# AutocacheOp —>» ... = LastOp
(M elements produced) (N elements produced)
L + P + P
PreAutocacheTime PostAutocacheTime
ReadFromCache —>» ... —» LastOp
- B J

T T
ProjectedCacheReadTime PostAutocacheTime

e Cachew selects the autocache op with max throughput (i.e. min TotalCacheExecTime)
e Compare with the throughput of pure compute (TotalComputeTime)

e Select option with highest throughput — at most one autocache selected



policy evaluation

Measure batch time with synthetic input data pipeline that augments source data by 2.5X.
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Future directions for ML data services

How to leverage knowledge across jobs to improve data and model quality?

* Training data discovery service
» Recommend “relevant” source datasets used by other jobs

» Data auto-augmentation service
* Recommend data augmentations

 Data importance service
* Recommend training examples that are most relevant for the task at hand
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How can we reduce the cost of ML?

Resource efficiency = maximize GPU/TPU
utilization

Data efficiency

- train on the most
important data
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How can we reduce the cost of ML?

Data efficiency

- train on the most
important data
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Real datasets are often dynamic

Q g . Art. 17 GDPR
| e ee Right to erasure (‘right to be
Q@ 0 28 forgotten

More data collected Data shifts Data needs to be deleted

- ML models need to be updated!
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How much can retraining help?

Example: online recommendations for GrubHub food delivery in 2021

Retraining Method Purchase Through Rate
Increase
No Retraining 0
Weekly Retraining +2.5%
Daily Retraining +20.3%

Online Learning for Recommendations for GrubHub, Alex Egg, 2021.



https://arxiv.org/abs/2107.07106

The cost of model retraining

s proportional to:
~ How often retrain
~ How many data samples use for training



How to update models cost-efficiently?

* When to trigger retraining?

 What data to train on?

Today, ML practitioners
decide ad-hoc!

~

2

~ ~
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me: dyn : platform for ML on dynamic data

* Pluggable training triggering + data selection policies

* Manages dynamic datasets (and associated metadata) at scale,
with sample-level darta selection

« Orchestrates training jobs

6 https://github.com/eth-easl/modyn i

Maximilian Bother

Towards a Platform and Benchmark Suite for Model Training on Dynamic Datasets. EuroMLSys'23.
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Modyn goals and challenges

— g_.v

GO}
CIIIIEX-)
Fast sample-level Continuous Ease of use and
data selection model life-cycle  extensibility to

during training orchestration ease adoption



Modyn system architecture
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Training Throughput for Criteo RecSystem

Near-local throughput, even for memory-bound training.
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https://arxiv.org/abs/2312.06254

Ongoing work on data efficiency

Data selection policy exploration

ML
Model triggering policy exploration
Exploring the interplay between the above two

Systems

Importance-aware data placement in storage hierarchy



Benchmark suite for ML on dynamic data

CXRITEO

(opemons G= SECMWE

Recommender Text Autonomous Weather
Systems Classification Driving Forecasting
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ML training is increasingly data hungry & expensive

Cost in USD (log scale, inflation-adjusted) N 90% Cl in regressionmean = Regression mean (3.1x/year

Publication date of Ml
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How to reduce the cost of ML training?

Resource efficiency = maximize GPU/TPU
utilization

Need to optimize how
we store & ingest data!

Data efficiency

-> train on the most
important data

Disaggregate input data processing to eliminate
data stalls and maximize training throughput

Client 0.2
Client 0.1 CACHEW SERVICE

Job O Client 0.0
Cache
\ cluster
(source &
preprocessed
duta)

Cloud storage
(source data)

https://github.com/eth-easl/cachew

Train models efficiently on dynamic datasets

- When to trigger training?
- What data to train on?

modyn

https://github.com/eth-easl/modyn



https://github.com/eth-easl/cachew
https://github.com/eth-easl/modyn

