
zns-tools: An eBPF-powered, Cross-Layer
Storage Profiling Tool for NVMe ZNS SSDs

Nick Tehrany, Krijn Doekemeijer, and Animesh Trivedi
Vrije Universiteit Amsterdam

https://github.com/stonet-research/zns-tools

1

https://github.com/stonet-research/zns-tools

Cloud Computing + Storage

2

Challenges with SSDs

3

Write once
Write sequentially
Erase (or RESET)
Garbage collection (GC)
Finite P/E cycle
Errors
Chip management

Read anywhere
Write anywhere

Complexity
Unpredictability
Interference

(all hidden from us)

Lots of research

4

Rise of the Open SSD Interfaces

Idea: make SSD internal state and operations more …

● Visible

● Under the control of the host system software (OS)

Multiple design points: Software-defined Flash, Open Channel SSD, Stream SSD…

Today: Zone Namespace SSDs or ZNS SSD

Benefits:

● An OS can decide how store data and manage SSD storage

● An OS can plan (resource management) for a particular QoS

● An OS can explain why performance suffered

● Simplified SSD internals 5

ZNS: The New Storage Interface and Capabilities

6

https://zonedstorage.io/docs/introduction/zns

Standardized in the NVMe 1.4, July 2021

https://zonedstorage.io/docs/introduction/zns

ZNS Introduction: New I/O and Management Operations

7

Zones (written sequentially)
1

ZNS Introduction: New I/O and Management Operations

8

Zones (written sequentially)
1

2

Fully written zone is Erased by
the host (OS)

A new command : RESET

ZNS Introduction: New I/O and Management Operations

9

Zones (written sequentially)
1

2

Fully written zone is Erased by
the host (OS)

A new command : RESET

APP-1

App-2

3

Application-controlled
data placements in zones

What Does This Mean?

10

NVMe device driver

Linux Block Layer

File Systems

ApplicationsBetter control (visibility) on …

1. Data placement in zones

2. Parallelism management

3. Garbage collection

4. Zone resets

With this visibility, we have an opportunity to build

a more expressive, complete & comprehensive

Data Lifecycle Event tracing framework!

ZNS : Software Integration Challenges (non-Trivial)

11

zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy)

● Collection of tools

● (WiP) user@system:~$ tool1 | tool2 | tool3

12

zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy)

● Collection of tools

● (WiP) user@system:~$ tool1 | tool2 | tool3

Keep it modular and standardized
● Follows the Model-View-Controller model

● Decouples trace gathering, processing, and visualization

● BPFtrace output and JSON format (but extensible)

13

zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy)

● Collection of tools

● (WiP) user@system:~$ tool1 | tool2 | tool3

Keep it modular and standardized
● Follows the Model-View-Controller model

● Decouples trace gathering, processing, and visualization

● BPFtrace output and JSON format (but extensible)

Keep it lightweight
● eBPF !

● Supports complex data structure walks, and parsing 14

[1/3] zns-tools.nvme:Profiling the ZNS Device

NVMe driver (ZNS) and the Linux block layer profiler

What to trace?

● All I/O commands: Read, Writes, Appends

● All management commands: Reset, Finish

● Size of the payload, timestamp …

Data is then grouped on per-zone basis

Insights:

● Are all zones uniformly used (wear-leveling)?

● Are there heavily over written or read zones?

15

NVMe device driver

Linux Block Layer

File Systems

Applications

user@system:~$ zns-tools.nvme nvme2n1

Exploring the ZNS Software Integration Options

16

F2FS ZenFS F2FS F2FS F2FS

YCSB, Workload-A (50% read, 50% write)

Insight: Not all the ZNS Integration options are the same!

17

Insight: Not all the ZNS Integration options are the same!

18

F2FS has an even zone usage

Domain-specific, ZenFS does
not any wear-leveling on
zones

PostgresSQL issues a
lot more zone Resets

Aged F2FS issues
significantly more Resets

[2/3]zns-tools.fs: Profiling the File System

Linux file system and the VFS-level event tracer

What to trace?
● File-level I/O events (open, read, write, close)

● File system-level life cycle events

(garbage collections for LFS, file hotness levels)

Three subtools: fs.fiemap, fs.imap, and fs.segmap [github]

Insights:
● In which zones my files are stored, what is the fragmentation level?

● Is my file stored in hot or cold ZNS zone?

● How many hot files are in this directory?

19

NVMe device driver

Linux Block Layer

File Systems

Applications

https://github.com/stonet-research/zns-tools/tree/master/zns-tools.fs/examples

zns-tools.fs: Two Specific Responsibilities

[Any FS] Locate a file (name) to its zone storage location

● Uses FIEMAP (ioctl) call to extract file extents (LBA address, length)

● Generate: address-to-zone mappings, extent distribution

(min, max, percentiles), hole statistics, zone-level placement information

[F2FS-specific, semantic] Identify hotness classifications of F2FS segments and ZNS

zones

● Data: file data and file metadata (inode), Temperate classes: Hot, Warm, Cold

● Read F2FS metadata (/proc, F2FS checkpoints for NAT)

● Any file/directory → set {F2FS segments, zones, temperature}

● Any zone → set {F2FS file segments, inode segments, file names, offsets}
20

[3/3]nvme.app: Profiling the Whole System

Profile any user defined events functions with {kernel, userspace} eBPF probes

What to trace?

● Application-level: (LSM KV) compaction, garbage collection, WAL and memtables flushes

● File system-level: All previously discussed file system related events

● NVMe-level: All previously nvme, block-level events

Insights:

● Why does my application data got mixed with other application data?

● Why there was a reset issues to this particular zone?

● Why did my P99 latencies increased from the baseline?

21

Example Run

22

Total event count

Timeline stamps

Which layer

Expanded version with
tracing of write and reset

Application-level events
“flush” probes “compaction” probes

Height are counts

Future Work

● Implement the UNIX pipe design

● Deep integration with F2FS and Btrfs

● Common abstraction to trace requests across the stack (currently time based)

● Expand to new applications

● NVMe FDP support

● Performance evaluation to high-capacity ZNS arrays (scaling challenge)

● Interactive visualization

● Storage traces in databases for more expressive analysis

23

Thank you

 Nick Tehrany Krijn Doekemeijer

https://github.com/stonet-research/zns-tools

https://atlarge-research.com/pdfs/2024-zns-tools.pdf

24Acknowledgments: The Dutch Research Council (NWO) and Western Digital

https://github.com/stonet-research/zns-tools
https://atlarge-research.com/pdfs/2024-zns-tools.pdf

Overheads

25

