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Challenges with SSDs

Read anywhere
Write anywhere
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Write once

Write sequentially
Erase (or RESET)
Garbage collection (GC)
Finite P/E cycle

Errors

Chip management

.
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Complexity
Unpredictability
Interference

(all hidden from us)



Lots of research
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Abstract

Solid-state disks (SSDs) have the potential o revolution-
ize the storage system landscape. However, there is little
published work about their internal organization or the
design choices that SSD manufacturers face in pursuit of
optimal performance. This paper presents a texonomy of
such desi the likely.

of various u)nﬁgummm: using a trace-driven simulator
and workload traces extracted from real systems. We find
that SSD performance and lifetime is highly workload-
sensitive, and that complex systems problems that nor-
ar higher in the storage stack, or even in dis-
tributed systems. are relevant to device firmware.

1 Introduction

The advent of the NAND-flash based solid-state stor-
age device (SSD) is certain to represent a sea change in
the architecture of computer storage subsystems. These
devices are capable of producing not only exceptional
bandwidth, but also random 1O performance that is
orders of magnitude better than that of rotating disks.
Moreover, SSDs offer both a significant savings in power
budget and an absence of moving parts, improving sys-
tem reliability.

Although solid-state disks cost significantly more per
unit capacity than their rotating counterparts there are

where they can great

benefit. For example, in transaction-processing systems,
disk capacity is often wasted in order to improve oper-
ation throughput. In such configurations, many small
(cost inefficient) rotating disks are deployed to increase
1/O parallelism. Large SSDs. suitably optimized for ran-
dom read and write performance, could effectively re-
place whole farms of slow, rotating disks. At this writ-
ing, small SSDs are starting to appear in laptop comput-
ers because of their reduced power-profile and reliability
in portable environments. As the cost of flash continues
to decline, the potential application space for solid-state
disks will certainly continue to grow.

Despite the promise that SSDs hold, there is little in
the literature about the architectural tradeoffs inherent in
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SDF: Software-Defined Flash
for Web-Scale Internet Storage Syst¢
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Abstract increases /O bandwidth by
In the last severalyears hundreds of thousands of SSDshave S posert s o1 BVeraEd
been deployed in the data centers of Baidu, China’s largest %
Internet search company. Currently only 40% or less of the  Categories and Subject Desd

raw bandwidth of the flash memory in the SSDs is delivered
by the storage system o the applications. Morcover, because
of space ing in the SSD & non-
sequential or random writes, and additionally, parity coding
across flash channels, typically only 50-70% of the raw
capacity of a commodity SSD can be used for user data.
Given the large scale of Baidu's data center, making the most
effective use of its SSDs is of great i
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1. Introduction

To ever-incrd

we seek to maximize both bandwidth and usable capacity.
To achieve this goal we propose software-defined flash
(SDF),  hardwarc/software co-designed storage system to

mance in Internet data centf
state drives (SSDs) have by
hly'l throughput and low latd

‘maximally exploit the of flash
‘memory in the context of our workloads. SDF exposes in-
dividual flash channels to the host software and eliminates
Space OVer-proy ing. The host software, given direct ac-
cess 10 the raw flash channels of the SSD, can effectively
organize its data and schedule its data access to better real-
ize the SSD’s raw performance potential.

Currently more than 3000 SDFs have been deployed in
Baidu's storage system that supports its web page and im-
age repository services. Our measurements show that SDF
can deliver approximately 95% of the raw flash bandwidth
and provide 9% of the flash capacity for user data. SDF
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1 Introduction
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The Unwritten Contract of Solid State Drives
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Abstract

We perform a detailed vertical analysis of application perfor-
mance atop a range of modern file systems and SSD FTLs.
We formalize the “unwritten contract” that clients of SSDs
should follow to obtain high performance, and conduct our
analysis 1o uncover application and file system designs that
violate the contract. Our analysis, which utilizes a highly
detailed SSD simulation undemeath traces taken from real
workloads and file systems, provides insight into how to bet-
ter construct applications, file systems, and FTLs to realize
robust and sustainable performance.

1. Introduction

In-depth performance analysis lies at the heart of systems
research. Over many years, careful and detailed analysis
of memory systems [26, 81], file systems [36, 50, 51, 66,
84, 87], parallel applications [91]. operating system kernel
structure [35], and many other aspects of systems [25, 29,
37.41, 65] has yielded critical, and often surprising, insights
into systems design and implementation.

However, perhaps due to the rapid evolution of storage
systems in recent years, there exists a large and impor-
tant gap in our understanding of /O performance across
the storage stack. New data-intensive applications, such as
LSM-based (Log-Structured Merge-tree) key-value stores,
are increasingly common [6, 14]; new file systems, such
as F2FS [62], have been created for an emerging class of
flash-based Solid State Drives (SSDs): finally, the devices
themselves are rapidly evolving, with aggressive flash-based
translation layers (FTLS) consisting of a wide range of op-
timizations. How well do these applications work on these
modern file systems, when running on the most recent class
of SSDs? What aspects of the current stack work well, and
which do not?

The goal of our work is 1o perform a detailed vertical
analysis of the application/file-system/SSD stack to answer
the aforementioned questions. We frame our study around
the file-systenm/SSD interface, as it is critical for achieving
high performance. While SSDs provide the same interface

as hard drives, how higher layers utilize said interface can
greatly affect overall throughput and latency.

Our first contribution is to formalize the “unwritten con-
tract” between file systems and SSDs, detailing how up-
per layers must treat SSDs to extract the highest instan-
tancous and long-term performance. Our work here is in-
spired by Schlosser and Ganger's unwritten contract for hard
drives [82], which includes three rules that must be tacitly
followed in order to achieve high performance on Hard Disk
Drives (HDDs); similar rules have been suggested for SMR
(Shingled Magnetic Recording) drives [46].

We present five rules that are critical for users of SSDs.
First, 1o exploit the internal parallelism of SSDs, SSD clients
should issue large requests or many outstanding requests
(Request Scale rule). Second, to reduce translation-cache
misses in FTLs, SSDs should be accessed with locality
(Locality rule). Third, 1o reduce the cost of converting page-
level 1o block-level mappings in hybrid-mapping FTLs,
clients of SSDs should start writing at the aligned begin-
ning of a block boundary and write sequentially (Aligned
Sequentiality rule). Fourth, o reduce the cost of garbage
collection, SSD clients should group writes by the likely
death time of data (Grouping By Death Time rule). Fifth,
to reduce the cost of wear-leveling, SSD clients should cre-
ate data with similar lifetimes (Uniform Data Lifetime rule).
The SSD rules are naturally more complex than their HDD
counterparts, as SSD FTLs (in their various flavors) have
more subtle performance properties due to features such as
wear leveling [30] and garbage collection [31, 71].

We utilize this contract to study application and file sys-
tem pairings atop a range of SSDs. Specifically, we study
the performance of four applications — LevelDB (a key-
value store), RocksDB (a LevelDB-based store optimized
for SSDs). SQLite (a more traditional embedded database),
and Varmail (an email server benchmark) — running atop a
range of modern file systems — Linux ext4 [69], XFS [88],
and the flash-friendly F2FS [62]. To perform the study and
extract the necessary level of detail our analysis requires,
we build WiscSee, an analysis tool, along with WiscSim. a
detailed and extensively evaluated discrete-event SSD si
ulator that can model a range of page-mapped and hybrid
FTL d:>|gns [48, 54, 57, 74]. We extract traces from each
pairing, and then, by applying said
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Rise of the Open SSD Interfaces

S\ V' 4
Idea: make SSD internal state and operations more ... ;Q:

e Visible
e Under the control of the host system software (OS)

Multiple design points: Software-defined Flash, Open Channel SSD, Stream SSD...
Today: Zone Namespace SSDs or ZNS SSD

Benefits:

An OS can decide how store data and manage SSD storage
An OS can plan (resource management) for a particular QoS
An OS can explain why performance suffered

Simplified SSD internals



ZNS: The New Storage Interface and Capabilities

(@) zoned storage  Documentation  Community

Introduction v

Overview
Zoned Storage Devices Overview

Shingled Magnetic Recording
Hard Disks

NVMe Zoned Namespaces (ZNS)
Devices

Linux Zoned Storage Ecosystem
Getting Started
Linux Kernel Support
Applications
Tools and Libraries
System Compliance Tests

Performance Benchmarking

vV VvV VYLV v

Linux Distributions

Frequently Asked Questions

A > Introduction >

NVMe Zoned Namespaces (ZNS) Devices

NVMe Zoned Namespaces (ZNS) Devices

NVMe Zoned Namespace (ZNS) devices introduce a new division of functionality between host software and the device controller. A
ZNS device exposes its capacity into zones, where each zone can be read in any order but must be written sequentially.

The NVM Express (NVMe) organization released as part of the NVMe 2.0 specifications the NVMe ZNS Command Set specification.
The latest revision of this specification available is 1.1. The NVMe ZNS specification define a command interface that applies to all
NVMe defined command transport. This command set is independent of the storage media technology used by the device and
applies equally to Flash-based solid state drives (SSDs) or SMR hard disks.

The most common type of ZNS devices found today are Flash-based SSDs. For this type of device, the ZNS interface characteristics
allow improving internal data placement and thus leads to higher performance through higher write throughput, improved QoS
(lower access latencies) and increased capacity.

@ NoTe
See ZNS: Avoiding the Flash-Based Block Interface Tax for Flash-Based SSDs for a deep dive on ZNS SSDs. The article was
published at USENIX ATC 2021.

Overview

‘The ZNS specifications follows the Zoned Storage Model. This standards-based architecture, which takes a unified approach to
storage that enables both Shingled Magnetic Recording (SMR) in HDDs and ZNS SSDs to share a unified software stack.
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Regular SSD: Device controls data
placement

https://zonedstorage.io/docs/introduction/zns

ZNS SSD: Applications control data
placementin zones

Western Digitsd
Ultrastar
DC ZN540

DATA CENTER NVMe~ D5 35D
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ZNS SSD

ZONED
STORAGE t

Standardized in the NVMe 1.4, July 2021



https://zonedstorage.io/docs/introduction/zns

ZNS Introduction: New 1I/0 and Management Operations

T Zones (written sequentially)
Ultrastar

STORAGE

DC ZN540
ZONED E“




ZNS Introduction: New 1I/0 and Management Operations

T Zones (written sequentially)
Ultrastar

DC ZN540
ZONED s,:

STORAGE

Fully written zone is Erased by
the host (OS)

A new command : RESET



ZNS Introduction: New 1I/0 and Management Operations

T Zones (written sequentially)

Ultrastar

DC ZN540
ZONED s,:

STORAGE

APP-1

Application-controlled
data placements in zones

Fully written zone is Erased by
the host (OS)

A new command : RESET



What Does This Mean?

Better control (visibility) on ...

Data placement in zones
Parallelism management

Garbage collection

W N e

Zone resets

With this visibility, we have an opportunity to build
a more expressive, complete & comprehensive
Data Lifecycle Event tracing framework!

=N 4
ZONED ) ZONED ZONED
STORAGE STORAGE STORAGE
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ZNS : Software Integration Challenges (non-Trivial)

Device

@ © )
User Applications:
Space RocksDB, fio
75 7
ZenFS ﬁ
Kernel 4 Sp—— File System ] [ l io_uring
y : (ZNS support) — passtllirough
Translation oneFS [F2FS ||| Posix hlbzb(i
Layer [Btrfs | jE j
Block < S
I/0 Scheduler (e.g., mg-deadline)
Layer Zs “~ g v
SSD R S 2 \ 7 E—
VMe ZNS ZNS ZNS
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zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy)
AWy

® Collection of tools i BUFf
emory puftrer

e (WiP)user@system:~$ tooll | tool2 | tool3 @ ;
Pipe

12



zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy) A
® Collection of tools Mem:y -y
e (WiP)user@system:~$ tooll | tool2 | tool3 (.) )
Pipe

Keep it modular and standardized
e Follows the Model-View-Controller model

e Decouples trace gathering, processing, and visualization

e BPFtrace output and JSON format (but extensible) @

(0

s N
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zns-tools: An eBPF-powered Profiling Tool for NVMe ZNS SSDs

Do one thing well (the UNIX pipe philosophy)

® Collection of tools
e (WiP)user@system:~$ tooll | tool2 | tool3

Keep it modular and standardized
e Follows the Model-View-Controller model
e Decouples trace gathering, processing, and visualization
e BPFtrace output and JSON format (but extensible)

Keep it lightweight
® eBPF!
® Supports complex data structure walks, and parsing

A

et
Memory Buffer

(.
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[1/3] zns-tools.nvme:Profiling the ZNS Device

NVMe driver (ZNS) and the Linux block layer profiler ( Applications )

( File Systems )

( Linux Block Layer )

What to trace?

e All /O commands: Read, Writes, Appends

( NVMe device driver )
e All management commands: Reset, Finish : T T :
® Size of the payload, timestamp ...

Data is then grouped on per-zone basis

user@system:~$ zns-tools.nvme nvme2nl

Insights:

® Are all zones uniformly used (wear-leveling)?
® Are there heavily over written or read zones?

15



Exploring the ZNS Software Integration Options

YCSB, Workload-A (50% read, 50% write)
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I8N ot all the ZNS Integration options are the same!
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(a) RocksDB + F2FS

(b) RocksDB + ZenFS
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(c) MongoDB + F2FS
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(d) PostgreSQL + F2FS  (e) RocksDB + aged F2FS
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I8N ot all the ZNS Integration options are the same!
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(a) RocksDB + F2FS (b) RocksDB + ZenFS (c) MongoDB + F2FS (d) PostgreSQL + F2FS  (e) RocksDB + aged F2FS
\ PostgresSQL issues a

F2FS has an even zone usage lot more zone Resets

Domain-specific, ZenFS does

not any wear-leveling on
zones

Aged F2FS issues

significantly more Resets
18



[2/3]zns-tools.fs: Profiling the File System

Linux file system and the VFS-level event tracer Applications

)
)

What to trace? {( File Systems

e File-level I/O events (open, read, write, close)
e File system-level life cycle events
(garbage collections for LFS, file hotness levels)

Three subtools: fs.fiemap, fs.imap, and fs.segmap [github]

Insights:
® In which zones my files are stored, what is the fragmentation level?
® /s my file stored in hot or cold ZNS zone?
e How many hot files are in this directory?

19


https://github.com/stonet-research/zns-tools/tree/master/zns-tools.fs/examples

zns-tools.fs: Two Specific Responsibilities |
Application HBB F)Ze

[Any FS] Locate a file (name) to its zone storage location  _______5 iy S

. . Kernel/ | r VF‘IEM AP |

e Uses FIEMAP (ioctl) call to extract file extents (LBA address, length) | Jars _\ _\\_ —
® Generate: address-to-zone mappings, extent distribution ZNS v

(min, max, percentiles), hole statistics, zone-level placement information Device HD DD

Zone 1 Zone 2

[F2FS-specific, semantic] Identify hotness classifications of F2FS segments and ZNS
zones

Data: file data and file metadata (inode), Temperate classes: Hot, Warm, Cold
Read F2FS metadata (/proc, F2FS checkpoints for NAT)

Any file/directory — set {F2FS segments, zones, temperature}

Any zone — set {F2FS file segments, inode segments, file names, offsets}

20



[3/3]nvme.app: Profiling the Whole System

Profile any user defined events functions with {kernel, userspace} eBPF probes

What to trace?

e Application-level: (LSM KV) compaction, garbage collection, WAL and memtables flushes
e File system-level: All previously discussed file system related events
e NVMe-level: All previously nvme, block-level events

Insights:

e Why does my application data got mixed with other application data?
e Why there was a reset issues to this particular zone?
e Why did my P99 latencies increased from the baseline?

21



Total event count

Example Run
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Which layer /M
"

Expanded version with  nmecmdwieo

tracing of write and reset |~ | eight are counts

v VFS2

Timeline stamps

v MM4

A RocksDB 1

compaction 3 compact.. compact compaction compaction
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Application-level events 22

“flush” probes “compaction” probes



Future Work

e Implement the UNIX pipe design

® Deep integration with F2FS and Btrfs

e Common abstraction to trace requests across the stack (currently time based)
e Expand to new applications

e NVMe FDP support

e Performance evaluation to high-capacity ZNS arrays (scaling challenge)

® |Interactive visualization

® Storage traces in databases for more expressive analysis

23



Thank you
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