
ZWAL: Rethinking Write-ahead Logs for ZNS

SSDs with Zone Appends

Krijn Doekemeijer, Zebin Ren, Nick Tehrany, and Animesh Trivedi
https://krien.github.io/

1

The amount of data is ever-increasing

HPCBig data

1 Yottabyte
each year!

Read WriteReadWrite

2

LSM-tree KV-stores

● First write to ephemeral memory

Memtable

Storage

Memory

Small Write

Large Write

2

LSM-tree KV-stores

● First write to ephemeral memory
● Backup writes to the WAL

Memtable

Storage

Memory

WAL

Small Write

Large Write

3

LSM-trees use fast NVMe flash

Memtable

Storage

Memory

WAL

Small Write

Large Write

Large
Small

NVMeFast!

4

LSM-trees use fast, but unstable NVMe flash

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjørling; Animesh Trivedi, Performance characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

4

LSM-trees use fast, but unstable NVMe flash

What about WAL’s requirements? Is there another interface?

WAL

?

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjørling; Animesh Trivedi, Performance characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

5

Meet NVMe Zoned Namespace (ZNS)

● A new NVMe standard
● Firmware
● Stable performance
● Savior of LSM-trees!

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjørling; Animesh Trivedi, Performance characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

5

Meet NVMe Zoned Namespace (ZNS)

● A new NVMe standard
● Firmware
● Stable performance
● Savior of LSM-trees?

What is the catch?
● Different way to access

storage…
● Small WAL writes do not scale

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjørling; Animesh Trivedi, Performance characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

6

WALs for the throughput stable NVMe ZNS interface

What we will discuss today

WAL

Small writes scale?

7

What operations does a WAL need?
An append-only log of all changes to KV-pairs with two key operations:

Write to WAL

Update(K1, V2)

MemtableWrite

Read all

Update(K1, V1); …
Apply

1

2
1

Recover WAL

U(K1,V1) … U(K1,V1) … U(K1,V2)

8

Background: Why ZNS writes do not scale

Zone 1 Zone … Zone N

ZNS: storage as a series of sequential write-only zones

9

Background: Why ZNS writes do not scale

Written

Empty
W1

W2

W3

So how does ZNS deal with 3 consecutive Writes?

Zone

9

Background: Why ZNS writes do not scale

Written

Empty

1 2 3

W1

W2

W3

W2

W3 W3

Subsequent Writes have to wait, serializing I/O!

9

Thus WAL writes with ZNS writes do not scale!

Written

Empty

1 2 3

W1

WAL WAL WAL
W2 W3

10

Meet the ZNS Append operation

Written

EmptyA1

● ZNS has a scalable alternative for Writes, Appends
● How does ZNS deal with 3 consecutive Appends?

A2 A3

Zone appends are issued concurrently to a zone

10

Meet the ZNS Append operation

Written

Empty

● ZNS has a scalable alternative for Writes, Appends
● How does ZNS deal with 3 consecutive Appends?

Addresses returned on completion, but can be anywhere and are ephemeral!

A1’

A3’

A2’A1 A2 A3

Completion

11

ZNS appends are fast!

Idea: ZWALs, use ZNS appends for the WAL to scale

12

● What is the goal?
○ Get WAL writes to scale

● How?
○ Use ZNS appends

● What are the challenges?:
1. Appends can be reordered
2. Recovering data efficiently

Introducing ZWAL: WALs with appends

ZWAL

Append

WAL

Write

13

Challenge-1: How to deal with reordering?
WAL can not use append as is:
● WAL entries are reordered
● WAL entry addresses are ephemeral…

WAL

?

Where is A1?
WAL

Completion
? ?

A1 A2 A3

14

ZWAL’s solution: add monotonic identifiers
ZWAL solves the issue with:
● Monotonic identifier S for each WAL entry
● Infer ordering from identifiers

S5+A1 S6+A2 S7+A3

S6 S7S5

Where is A1?
WAL WAL

Completion

15

Challenge-2: expensive WAL recovery

S9 S2S3 S4 S6 S7S5 S8 S10 S12 S11 S1

● WAL recovered in order
● Location needed for each Read
● Scans the whole log for each Read

WAL

S1 S3S2 S4 S5 S7S6 S8 S9 S10 S11 S12WAL

Sorting the WAL

16

ZWAL’s solution: Add barriers

S1 S2S3 S4 S6 S7S5 S8 S10 S12 S9 S11

● Bounds the number of Reads
● Sync all Appends after a barrier

Barrier 1 Barrier 2 Barrier 3

WAL

Strictly > 4 Strictly > 8

16

ZWAL’s solution: Add barriers

S1 S2S3 S4 S6 S7S5 S8 S10 S12 S9 S11

● Bounds the number of Reads
● Sync all Appends after a barrier

Strictly > 4 Strictly > 8

To read we only need to read in barrier 2

Barrier 1 Barrier 2 Barrier 3

S7

WAL

17

● State-of-the-art RocksDB + ZenFS

● Experiments:

1. Evaluate write throughput with YCSB

2. Evaluate WAL recovery

● Run on 2 ZNS SSDs

○ WD ZN540, 1.94TiB, 1.6GiB zones

○ ConfZNS emulator, 2 GiB zones

Evaluation setup

ZenFS ZenFS

ZWAL

ZNS ZNS

Baseline ZWAL

18

Experiment 1: ZWAL Write throughput

ZWAL Implemented in RocksDB + modified ZenFS

18

Experiment 1: ZWAL Write throughput

ZWAL Implemented in RocksDB + modified ZenFS

856%
27.39%

19

Experiment 2: Recovery overhead?
Contrary to expectations, we reduced the required recovery time

20.9 84.9

20

What next?

● Beyond ZenFS
● Use ZWALs in other databases (SQLite…)
● Use ZWALs in distributed settings

○ One SSD with WALs from multiple RocksDBs!
○ Disaggregated storage (NVMe-oF)

WAL

LSM-Tree

LSM-Tree

SQLite

21

More details/results in the paper …

22

Take-away message

● LSM-trees use unstable NVMe flash storage

○ ZNS allows for stable performance!

● LSM-tree WALs do not scale with ZNS Writes

○ Use ZNS Appends instead!

● We introduce ZWALs, Append-friendly WALs for ZNS

ZWAL

Paper: https://atlarge-research.com/pdfs/2024-zns-wal.pdf
Source code: https://github.com/stonet-research/zwal

Supported by NWO, Western Digital and 6G FNS

https://atlarge-research.com/pdfs/2024-zns-wal.pdf
https://github.com/stonet-research/zwal

23

Backup slides

23

WAL versus ZWAL

23

ZWAL buffering

23

ZWAL Recovery breakdown

23

Background: NVMe interface

Write

0 1 2 3 4 5

Written
Empty

Page

Read

