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Redesigning systems for data privacy

• Storage systems must provide data erasure 


• Ideally, this is provided…


• Within short timescales (timely)


• With low overhead (efficient)


• Without requirements of underlying 
storage medium (portable)


• Without bespoke system solutions
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Existing approaches

1. rm/unlink doesn’t securely delete 
data


2. Physical destruction is coarse-
grained and wasteful (inefficient)


3. Overwrite erasure comes with 
impractical constraints


• Requires in-place overwrite (not 
portable)


• Often requires multiple passes


• Degrades device durability
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Cryptographic erasure

• Securely delete data by encrypting it and erasing the key


• Introduces the key management problem:


• How do we balance the amount of securely deletable storage and computation?
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Lethe

• Provides timely, fine-grained secure deletion on arbitrary storage media


• Only requires a small, fixed amount of securely deletable storage


• Efficiently solves the key management problem


• All data is written as append-only using copy-on-write


• Secure deletion isn’t removing the data that is no longer wanted


• It is adding data that only allows access to what remains valid


• Portable since there is no requirement for in-place overwrite
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The rest of the talk

• Solution to the key management problem


• The design of Lethe


• Evaluation of the Lethe prototype
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Solution to the key management problem
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Solution to the key management problem
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What if we applied cryptographic erasure recursively?
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Solution to the key management problem
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Solution to the key management problem
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Solution to the key management problem
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• Hierarchy reduces the  securely deletable storage down to : a single key 

• Portable since only the root key needs to be erased; key blocks are protected recursively
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Solution to the key management problem
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A. Key revocation requires  re-encryption


• Roll forward the keys to still-valid data, and replace the revoked keys


• Revoked keys are securely deleted once old root is erased


B. We want to reduce the cost of the re-encryption by efficiently managing the tree of keys
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Keyed Hash Tree

• Used by Horus[1] for efficient key derivation


• But not key revocation


• A node is a key identified by level and offset


• Descendant keys computed recursively


• Parent , child , cryptographic hash 


• 


• Topology defined by L1 subtree topology


• Can have an arbitrary number of L1 subtrees


• Effectively infinite keys from a single root

m n H

nkey = H(mkey | | nlevel | | noffset)
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One-way relationships
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• Computationally intractable to derive the value of an ancestor or sibling


• Doing so would require “inverting” a cryptographic hash function



Fragmentation through key revocation

• Occurs when data is 
overwritten or deleted


• Must keep roots that: 

• Provide still-valid key


• Provide replacement keys


• Cannot keeps roots that: 

• Cover revoked keys


• Causes fragmentation
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Keyed Hash Forest
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• Describes a forest of KHTs


• Designed for efficient key 
derivation and key 
revocation


• Fragments as deletes 
occurs over time


• Degenerate KHF: each key 
is covered by its own root



Lethe: Combining hierarchy and KHFs
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Lethe• Use more hierarchy to further reduce 
computation


• Also helps in exploiting locality 

• Lethe uses a two-level KHF hierarchy


• Can use more levels if desired


• Inode KHF protects an inode’s data blocks


• Master KHF protects inode KHFs


• A master key protects the master KHF


• Erasing the master key securely deletes the 
data it protects



Secure deletion by addition
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Secure deletion by addition
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Secure deletion by addition
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Epochs

• Intervals of time where write 
operations are batched together


• Amortizes cost of updating 
hierarchy of KHFs on each write or 
delete


• Can be tuned for either…


• Prompt secure delete: short epochs


• Performance: longer epochs


• Can also be triggered manually
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Consolidation

• KHFs can get quite large as 
fragmentation occurs over time


• Persisting an extremely 
fragmented KHF is expensive


• Pay the penalty of re-encryption to 
defragment a KHF


• Helpful for the master KHF, which 
needs to be re-written every epoch


• Not needed for security, but can 
improve performance in the long run
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Evaluation

• Integrated Lethe into ZFS


• Compared against:


1. Baseline ZFS (zfs)


2. ZFS with native encryption (zfs-enc)


• Per-block encryption


• Doesn’t support secure deletion


3. ZFS with Lethe (lethe)


• YCSB (1M operations, 1M records, Zipfian)


• Intel NUC (i5, 4 cores, 1.6GHz, 32GB RAM)


• Samsung 970 EVO (500GB)
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zfs to zfs-enc: 2.6% decrease in throughput

zfs to lethe: 17.63% decrease in throughput



Conclusion

• Lethe is the first system to provide secure deletion…


• Within short timescales (timely)


• With low overhead (efficient)


• Without requirements of underlying storage medium (portable)


• As long as there is access to a small, fixed amount of securely deletable storage


• Lethe reframes the art of secure deletion 


• Not by removing the data that is no longer wanted,


• But by adding data that only allows access to what remains valid

24



Thanks for listening!
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Questions?

email: euchou@ucsc.edu 

mailto:euchou@ucsc.edu

