
Lethe: Secure Deletion by Addition
Eugene Chou, Leo Conrad-Shah, Austen Barker

Andrew Quinn, Ethan L. Miller, Darrell D. E. Long
Center for Research in Systems and Storage

University of California, Santa Cruz

Redesigning systems for data privacy

• Storage systems must provide data erasure

• Ideally, this is provided…

• Within short timescales (timely)

• With low overhead (efficient)

• Without requirements of underlying
storage medium (portable)

• Without bespoke system solutions

2

Existing approaches

1. rm/unlink doesn’t securely delete
data

2. Physical destruction is coarse-
grained and wasteful (inefficient)

3. Overwrite erasure comes with
impractical constraints

• Requires in-place overwrite (not
portable)

• Often requires multiple passes

• Degrades device durability

3

https://commons.wikimedia.org/wiki/File:Laptop-hard-drive-exposed.jpg
https://www.alumagubi.com/jackhammer-hard-drive-shredder/
https://news.microsoft.com/source/features/innovation/ignite-project-silica-superman/

inode

data

B0

B1

B2

B3

(1) (2)

(3)

enclave

(limited size)

magnetic media

flash media

WORM media

https://commons.wikimedia.org/wiki/File:Laptop-hard-drive-exposed.jpg
https://www.alumagubi.com/jackhammer-hard-drive-shredder/

Cryptographic erasure

• Securely delete data by encrypting it and erasing the key

• Introduces the key management problem:

• How do we balance the amount of securely deletable storage and computation?

4

inode0

data

B0

B1

B2

B3

inode1

key

inode0

data

B0

B1

B2

B3

inode1

key0

key1

inode0

data

B0

B1

B2

B3

inode1
key3

key0

key1

key2

O(1) recomputation (efficient)
O(n) securely deletable storage (not portable)

O(n) recomputation (inefficient)
O(1) securely deletable storage (portable)

coarse-grained
encryption

fine-grained
encryption

Lethe

• Provides timely, fine-grained secure deletion on arbitrary storage media

• Only requires a small, fixed amount of securely deletable storage

• Efficiently solves the key management problem

• All data is written as append-only using copy-on-write

• Secure deletion isn’t removing the data that is no longer wanted

• It is adding data that only allows access to what remains valid

• Portable since there is no requirement for in-place overwrite

5

The rest of the talk

• Solution to the key management problem

• The design of Lethe

• Evaluation of the Lethe prototype

6

Solution to the key management problem

7

K0 K1 K2 K3

B0 B1 B2 B3

Solution to the key management problem

8

What if we applied cryptographic erasure recursively?

K0 K1 K2 K3

B0 B1 B2 B3

Solution to the key management problem

9

K0 K1 K2 K3

B0 B1 B2 B3

Solution to the key management problem

10

K0 K1 K2 K3

B0 B1 B2 B3

K… K…

Solution to the key management problem

11

• Hierarchy reduces the securely deletable storage down to : a single key

• Portable since only the root key needs to be erased; key blocks are protected recursively

O(n) O(1)

K0 K1 K2 K3

B0 B1 B2 B3

K… K…

K…

Solution to the key management problem

12

A. Key revocation requires re-encryption

• Roll forward the keys to still-valid data, and replace the revoked keys

• Revoked keys are securely deleted once old root is erased

B. We want to reduce the cost of the re-encryption by efficiently managing the tree of keys

O(log(n))

K0 K1 K2 K3

B0 B1 B2 B3

K… K…

K…

K0 K’1 K2 K3

B’1

K’… K…

K’…

K0 K1 K2 K3

B0 B1 B2 B3

K… K…

K…
(A)

K0 K1 K2 K3

B0 B1 B2 B3

???

K
(B)

Keyed Hash Tree

• Used by Horus[1] for efficient key derivation

• But not key revocation

• A node is a key identified by level and offset

• Descendant keys computed recursively

• Parent , child , cryptographic hash

•

• Topology defined by L1 subtree topology

• Can have an arbitrary number of L1 subtrees

• Effectively infinite keys from a single root

m n H

nkey = H(mkey | | nlevel | | noffset)

13

Level 1

Level 2

Level 3

Level 0

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5

K2,0 K2,1 K2,2

K1,0

K0,0

…

…

…

K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K2,3 K2,4 K2,5

K1,1

[1] Li et. al. “Horus: Fine-Grained Encryption-Based Security for Large-Scale Storage” (FAST 2013)

One-way relationships

14

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K1,0 K1,1

K0,0

…

…

…

Legend

 known

 derivable

 underivable

• Computationally intractable to derive the value of an ancestor or sibling

• Doing so would require “inverting” a cryptographic hash function

Fragmentation through key revocation

• Occurs when data is
overwritten or deleted

• Must keep roots that:

• Provide still-valid key

• Provide replacement keys

• Cannot keeps roots that:

• Cover revoked keys

• Causes fragmentation

15

Legend

 stored

 computed

 data block

 to overwrite

 encryption key

 encrypts

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5

K2,0 K2,1 K2,2

K1,0

K0,0

…

…

…

B0 B1 B2 B3 B4 B5 …

K3,0 K3,1 K’3,3 K3,4 K3,5

K2,0 K2,2

…

…

…

B0 B1 B2 B3 B4 B5 …

K3,2

Keyed Hash Forest

16

Legend

 stored in KHF

 computed

 data block

 encryption key

 encrypts

KHF

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K2,0 K2,2 K2,3 K2,4 K2,5

K1,1

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

• Describes a forest of KHTs

• Designed for efficient key
derivation and key
revocation

• Fragments as deletes
occurs over time

• Degenerate KHF: each key
is covered by its own root

Lethe: Combining hierarchy and KHFs

17

Legend

 stored

 computed

 data block

 encryption key

 encrypts

master KHF

inode KHF0 inode KHF1

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

K2,0 K2,1 K2,2 K2,3 K2,5

K1,0

K3,0 K3,1 K3,2 K3,3 K3,4

K2,0 K2,1

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5

K2,0 K2,1 K2,2

K1,0

master key

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Lethe• Use more hierarchy to further reduce
computation

• Also helps in exploiting locality

• Lethe uses a two-level KHF hierarchy

• Can use more levels if desired

• Inode KHF protects an inode’s data blocks

• Master KHF protects inode KHFs

• A master key protects the master KHF

• Erasing the master key securely deletes the
data it protects

Secure deletion by addition

18

time t’

data

time t

data …B0 B1

inode KHF

master KHFmaster key

…B0 B1 B’0

master KHFmaster key

inode KHF’

master KHF’ master key’

inode KHF

Legend

 securely deletable

 free block

 used block

 encryption key

 encrypts

 inaccessible

Secure deletion by addition

19

time t’

data

time t

data …B0 B1

inode KHF

master KHFmaster key

…B0 B1 B’0

master KHFmaster key

inode KHF’

master KHF’ master key’

inode KHF

Legend

 securely deletable

 free block

 used block

 encryption key

 encrypts

 inaccessible

Secure deletion by addition

20

time t’

data

time t

data …B0 B1

inode KHF

master KHFmaster key

…B0 B1 B’0

master KHFmaster key

inode KHF’

master KHF’ master key’

inode KHF

Legend

 securely deletable

 free block

 used block

 encryption key

 encrypts

 inaccessible

Epochs

• Intervals of time where write
operations are batched together

• Amortizes cost of updating
hierarchy of KHFs on each write or
delete

• Can be tuned for either…

• Prompt secure delete: short epochs

• Performance: longer epochs

• Can also be triggered manually

21

epoch 0 end,
epoch 1 start

epoch 1 end,
epoch 2 start

epoch 2 end,
epoch 3 start

epoch 0 start

overwrite block 0
overwrite block 1
overwrite block 2

…

overwrite block 0
overwrite block 1
overwrite block 2

…

overwrite block 0
overwrite block 1
overwrite block 2

…

Consolidation

• KHFs can get quite large as
fragmentation occurs over time

• Persisting an extremely
fragmented KHF is expensive

• Pay the penalty of re-encryption to
defragment a KHF

• Helpful for the master KHF, which
needs to be re-written every epoch

• Not needed for security, but can
improve performance in the long run

22

B0 B1 B2 B3 B4 B5

K’2,0 K’2,1 K’2,2 K’2,3 K’2,4 K’2,5

K’1,0 K’1,1 K’1,2

K’0,0

B0 B1 B2 B3 B4 B5

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K1,0 K1,2

B0 B1 B2 B3 B4 B5

Evaluation

• Integrated Lethe into ZFS

• Compared against:

1. Baseline ZFS (zfs)

2. ZFS with native encryption (zfs-enc)

• Per-block encryption

• Doesn’t support secure deletion

3. ZFS with Lethe (lethe)

• YCSB (1M operations, 1M records, Zipfian)

• Intel NUC (i5, 4 cores, 1.6GHz, 32GB RAM)

• Samsung 970 EVO (500GB)

23

	
 � �
 �
������
�

�

�����

�����

�����

�
��
��
��
��
���
��
��
��
�

���������������	��������
��
���
�������
�����

zfs to zfs-enc: 2.6% decrease in throughput

zfs to lethe: 17.63% decrease in throughput

Conclusion

• Lethe is the first system to provide secure deletion…

• Within short timescales (timely)

• With low overhead (efficient)

• Without requirements of underlying storage medium (portable)

• As long as there is access to a small, fixed amount of securely deletable storage

• Lethe reframes the art of secure deletion

• Not by removing the data that is no longer wanted,

• But by adding data that only allows access to what remains valid

24

Thanks for listening!

25

Questions?

email: euchou@ucsc.edu

mailto:euchou@ucsc.edu

