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Overview
• What are key-value (KV) stores - Why?
• Our KV work at FORTH and the Univ. of Crete
• Indexing – towards small SSTs [Tucana ATC’16, Kreon SoCC’18]
• KV separation – differentiated treatment [Parallax SoCC’21]
• Replication – shipping indexes [Tebis EuroSys’22]
• Memory-mapped I/O caches (mmio) [FastMap ATC’20, Aquila EuroSys’21]

• Concluding remarks - What is the ideal KV store?
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New storage trends – New problems
• Bottleneck in the I/O path shifts from device to host
• With rotational disks (HDDs) CPU overhead is not significant

• Fast storage happened à NAND Flash, NVMe, NVM
• Millions of IOPS, < 10 μs access latency, require a lot of CPU cycles
• Form factor more convenient for certain uses (e.g. as local devices)

• Cloud happened as well à Applications evolve
• Colocation/sharing (multiple apps), workflows, I/O sizes, data use patterns

• Today, I/O path remains a concern
• In this landscape, KV stores dominate – Why?



KV store

KV stores as storage engines
• “New” approach for organizing, accessing data on devices

• Context: Rely on filesystem or KV-store for performance?

• Offer simple and versatile API to higher layers 
• Dictionary operations: put(), get(), delete(), and scan()
• No offsets visible to applications
• Further decouples logical/physical properties compared to FS

• Traditionally, most persistent I/O layers use a B+-tree
• Optimal for read I/Os, very good for scans, poor for writes
• Really poor for bursts of small updates (read-modify-write)

• KV-stores: write-optimized schemes to cope with ingest
• Idea: Buffer writes + use single I/O to write (LSM-Tree, Bε-Tree)
• Reorganize data over time to improve reads + updates
• Leads to multi-stage organization for data
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Multistage stores: constant re-organization

• They organize data in N  levels (L0 in memory) – sizes grow by f (e.g. f=10)
• Data (keys) in each level are unique and sorted (to improve reads/scans)

• Reorganizing data from level to level (compaction)
• Reason: 1. Reclaim old values (garbage), 2. Keep data sorted for reads/scans
• Various techniques: leveling, tiering, incremental, variations

• All approaches use some sort of sorted string tables (SSTs): container of data on device
• Compaction: Merge-sort operations for SSTs = read–sort–write

• + Generates only large I/Os
• - Increases I/O traffic compared to application I/O (amplification)
• - Incurs CPU overhead, data traversals poor match to tech trends
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Why are KV stores popular?
1. High device efficiency for small writes
• No read-modify-write operations, only large writes at device level
• Particularly important (cloud apps)

2. Ingest path insensitive to mixed workloads
• It makes application-level optimizations irrelevant
• Particularly important (cloud colocation/resource sharing)

3. Convenient abstraction
• KV pairs vs. offsets - Further decouple data from location on device
• Appears to be important as well
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• Index points to dev/data blocks (4K)
• Upper part of index can be a table 
• One entry per SST
• Few SSTs even for TBs of storage
• Always in memory

• Lower part of index packed with data 
blocks in each SST
• Large SSTs, e.g. 64 MBs – Large I/Os
• Compaction: heavy merge-sort ops
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• + Avoid CPU cycles for heavy merge-sort
• Good for CPU trends
• Take advantage of key skew
• Benefits for tail latency as well (current work)

• - Increase I/O randomness & small I/Os
• ok with device trends

• Requires
• More guards à may not fit in memory 
• Guard “table” needs dynamic organization 

(avoid constant copies)
• SST structure (and contents) need to change

• We explored two approaches
• Tucana – Bε-Tree index
• Kreon – B+-Tree index
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Bε-Trees
•Bε is a B-Tree variant that uses buffering for inserts
•Similar complexity as B-Tree for point, range queries
•No compactions – small, unsorted buffers in index nodes
• Better CPU overhead and I/O amplification
•Worse I/O randomness and I/O size

10
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Bε-Trees
• Each internal node has a persistent buffer
• ε% of node used for data (ε ⍷ [0,1])

• Buffers “log” multiple inserts and amortize I/O to device

Insert
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KV Separation [Atlas’15, WiscKey‘16, Tucana’16]

• Introduces randomness to reduce I/O amplification
• Places KV pairs in log (value log) 
• Contains full KV pairs (key + value)

•Maintains multistage index only for keys
• Internal nodes contain only keys or pivots
• Index leaves contain only keys and pointers to log

• Reduces write amplification significantly
• But requires cleaning the value log
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Tucana Bε-Tree index
• Buffered tree + small, unsorted SSTs + KV separation
• Full index - partly in memory
• Buffers only in leaf nodes in memory
• KVs only in log - index uses pointers to data

• “Spills” of data (instead of compactions) 
• Propagate updates to lower levels
• Less reorganization of buffers - more 4K I/Os

• Searching requires key accesses on device
• Tucana uses two optimizations for buffered nodes
• Key prefixes (fixed size) à 65%-75% fewer I/Os for keys in all queries
• Hashes for full keys (fixed size) à 98% fewer I/Os for keys in point queries
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Efficiency

• Tradeoff: Amplification vs. Randomness (Writes)
• Tucana has 3.5x less I/O traffic but 49x #I/Os (smaller, random)
• For two SSD generations Tucana: 4.7x and 3.1x throughput over RocksDB
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Kreon: LSM + KV log + Fine-grain indexing [ACM SoCC’18]

• LSM-type multilevel structure (memory-mapped)
• Separate B+-tree index per level with small leaves/SSTs (sorted/unsorted) [Similar to bLSM’12]
• Place KV pairs in a value log and reorganizes only pointers [Atlas’15, WiscKey‘16, Tucana’16]

• Efficient merging via spills of small SSTs
• Can take advantage of key skew to read less data from of 𝐿!"# compared to large SSTs

• Kreon uses partial/adaptive data reorganization
• In each level, reorganize data in each SST so data are sorted
• … and a few (logically) neighboring SSTs
• Rest of SSTs can be located anywhere on the device
• Use average scan size to determine threshold for how much to reorganize

KV   …       KV   …    KV    …

p ... p … p

Value Logp ... p … p
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LSM compaction                      Kreon spill

• KV separation and fine-grain indexing reduce I/O amplification (10x)
• Depends on KV pair size – great for larger (e.g. 1 KB) KV pairs
• Not great for scans, but rely on fast storage devices, e.g. NVMe

• Learned that
• We touch less data but with more operations – Fine-grain index updates cost in CPU
• Log cleaning can be very expensive for small KVs

• 60% of KV pairs observed in production workloads (Meta/FB) are small (33-100 Bytes) [Cao et al. FAST’20]
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Value log garbage collection
• Deletes, updates result in stale values
• Need to garbage collect
• Otherwise run out of space quickly

• Main overheads for GC to free a log segment
1. Identify valid KV pairs à requires lookup in 

the index for each key in the segment
2. Re-append valid KV pairs in log à requires 

updating the index
• GC impact on I/O amplification
• GC cost large for small (~1 to 100 bytes) KV pairs 
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Parallax: Hybrid KV Placement [ACM SoCC’21]
• Idea: Do not treat all KV pairs in the same manner
• Categorize KV pairs based on size
• Small pairs (1–100B): Always in-place
• No benefits from KV separation - Avoid garbage collection completely

• Large KV pairs (>1000B): Always in a separate (large) log
• GC not as expensive - Use garbage collection to reclaim space
• Up to 10x less amplification compared to compactions

• Medium KV pairs (100-1000B): Deferred Compaction
• Store a pointer in the LSM index for first N-1 levels
• Defer placement in medium log during L0 -> L1 compaction
• Keep medium KV pairs in sorted runs for efficient merge (in-place) at Li

08-May-2023 CHEOPS'23
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Large Value Log – GC, low cost for large values

Medium Value Log
L0 à Ln-1: KV pairs in medium log – no amplification

Small Value Log – Reclaim in chunksS:
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Ln-1 à Ln: Move medium KV pairs back to index + reclaim 
medium log as a whole (no GC cost)

. . .
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Recovery in Parallax
• Using multiple logs breaks ordering of operations
• Use sequence numbers across logs
• Increasing monotonic counter stored with each KV pair

• Recovery logs
• Use large log for recovery directly for large KV pairs
• Use L0 recovery log for small and medium KV pairs
• Medium KVs are moved to medium log during L0 à L1 compaction

• KV pairs may change size and category over time due to updates

08-May-2023 CHEOPS'23
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Parallax Results
• Important to examine workloads with mixed KV sizes

• Workloads from Facebook distribution [FAST’20]
• Examine I/O amplification, I/O throughput, CPU efficiency (cycles/operation)
• Significant improvements + Parallax makes KV separation more practical

• Current prototype: LSM + B+-Tree index + Small SSTs & batched rebuild + Hybrid KV placement
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• KV stores replicate data and index
• Typically: Send data to all backups 
• Requires compaction in each backup
• Reduces network traffic

• Tebis: Send pre-built index to replicas
• Build index once in primary & send to all
• Requires translating device pointers in index
• Saves (in backup nodes)

• CPU à no merge sort
• Device I/O à no read for Li (trade for network)
• Memory à no L0 in backups

• Better for both large and small KV pairs
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Tebis: Replication via Index Shipping [EuroSys’22]
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Device I/O: syscalls vs. mmio
• Explicit I/O = read/write system calls
• Can be buffered or unbuffered (direct I/O)
• SPDK avoids system calls but dedicates devices to a single application

•Memory-mapped I/O à mmap in Linux
• A file mapped to the virtual address space
• Use load/store instructions to access data
• Kernel fetches/evicts pages on-demand
• Always buffered - common buffers between application and page cache

• You can mix explicit and memory-mapped I/O
• Semantics may not be trivial



I/O Caching
• Caching essential in I/O path - Reduce accesses to the device
• All KV stores use a cache (typically read+block cache)

• Norm is explicit I/O
• (1) Kernel-space cache: Requires system calls also for hits
• (2) User-space cache: Function call for hits + system calls for misses
• Even a user-space cache incurs high CPU overhead
• Also, memory use is less flexible (no sharing with others)

• Memory-Mapped I/O
• Eliminates cost for lookups: virtual memory mappings (MMU+TLB)
• Requires no copy between kernel – user space
• Eliminates serialization/deserialization of data
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FastMap: mmio scaling [Usenix ATC’20]
• FastMap is a custom mmap path in Linux for file-backed VMAs
• Addresses mmap scalability issues
• (1) Fastmap separates metadata for clean, dirty pages in kernel
• Linux clean + dirty page structure uses tree_lock
• Fastmap avoids all centralization points

• (2) Fastmap optimizes (replaces) Linux reverse mappings
• Linux uses object-based reverse mappings for sharing pages among many processes
• Results in high cross NUMA-node traffic & CPU cycles
• Fastmap uses full-reverse mappings to reduce CPU cost

• (3) Fastmap uses a custom I/O cache
• Reduce interference and latency variability
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Aquila: mmio miss overhead [EuroSys’21]
• Reduces mmap page fault overheads

• Today: Apps run in ring 3, page faults handled in ring 0
• Requires frequent crossings/traps to kernel

• Aquila stipulates that for file-backed mappings
• System needs protection only for (large) memory allocations
• Page faults and device access can happen in a libOS

• Aquila re-designs operations of page fault path
• Uncommon: placed in root ring 0 for protection
• Common: placed in non-root ring 0 for performance

• As a result
• Application incurs low cost for page faults & dev access
• Protection still available, at low cost (uncommon path)
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Memory-mapped I/O path scalability and overhead
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xmap – Current Work
• Introduce huge pages for file-backed mmap
• Linux THP only for anonymous mappings

• Supports both transparent and guided use of regular/huge pages
• Dynamic and flexible use of both page types

• Asynchronous page promotions and demotions
• High degree of (explicit and implicit) control
• Multiple page pools, VMA directives, policies
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Limited use for mmio today
• Traditionally used for mapping executables and shared libraries (and some hand-tuned systems) 

• Scalability: Pages faults with #threads
• We thought: The kernel usually behaves well with a large number of threads à Not really

• Misses & I/O granularity: 4KB pages result in small and random I/Os
• We thought: Page faults for I/Os do not cost much with modern devices/CPUs à Not really
• +Synchronous behavior (I/O + PTE + TLB setup)

• Lack of control in I/O cache: Cache behavior & pollution
• We thought: LRU (and variants) work à Not really, direct I/O is a useful tool

• Complexity in recovery: Persistent data selection & ordering
• We thought: You can avoid the 2x writes of journaling without cost à Not really
• mmio mixes persistent & non-persistent data (expensive, loss of ordering across threads)

08-May-2023
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• Application writes à At device speed
• Match available device throughput
• Amortize, compaction I/O amplification ~1x
• Hybrid KV placement, small SSTs (key skew)

• App reads (and small scans) à 1x rnd I/O
• (for existing keys, no I/Os for reads of non-existing keys)

• Match available device IOPS
• Place all metadata in memory

• Tail latency à From secs to ~100 μs
• 1-2 IOs/level x #levels
• Small SSTs and bounded overlap across levels

• Small working sets à no IO
• Match mem xput – role of the cache
• Caching in KVs: Non-trivial in several respects

• Variable vs. fixed size items, data vs. metadata, 
hot/cold behavior, reads vs. writes

• Scale-out à Load-balancing, parallelism
• Better use of available resources for scaling
• Horizontal disaggregation of KV functions

• Device heterogen. à DRAM–NVM–FLASH
• (Unclear !) So far, NVM used only for special 

purpose uses, e.g. metadata

Quite a bit of work remains to be done !

CHEOPS'23 3408-May-2023

Concluding Remark: Towards a “perfect” KV store?
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