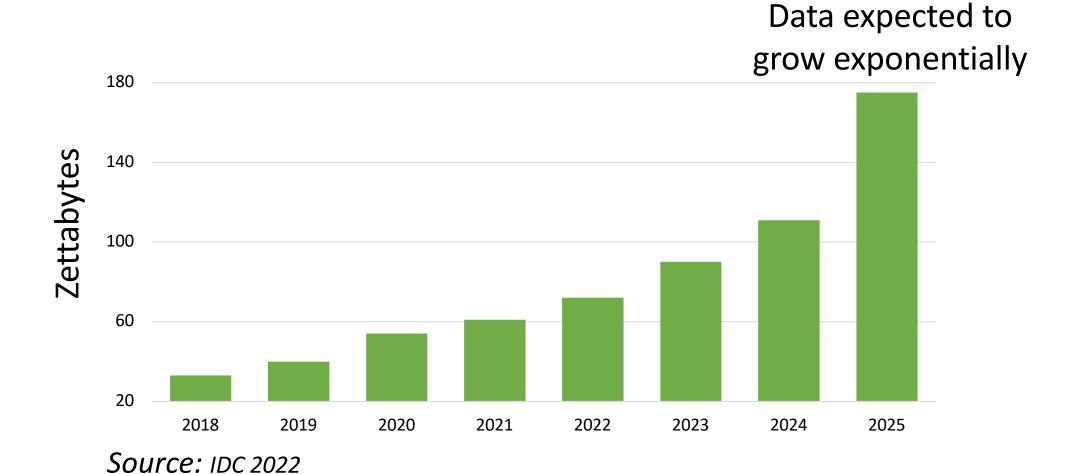
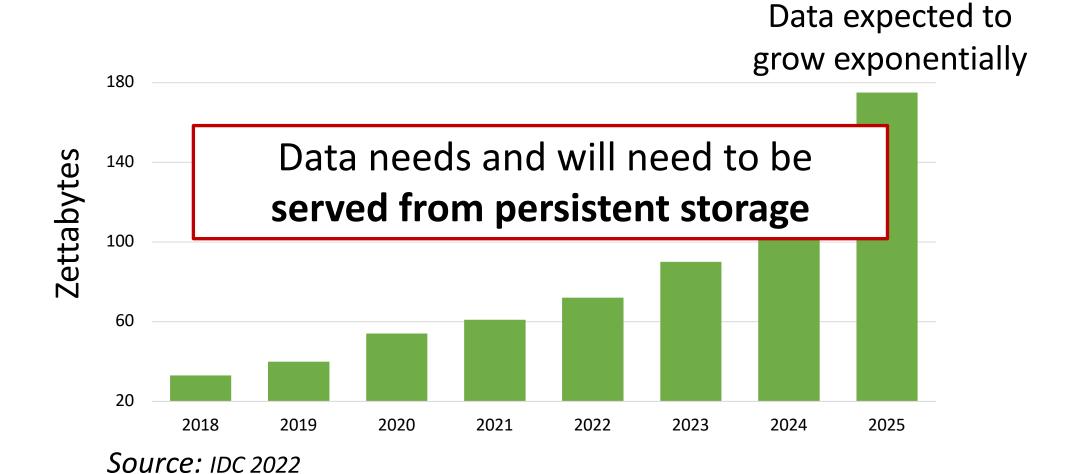
Characterizing Machine Learning I/O with MLPerf Storage

Oana Balmau CHEOPS @ EuroSys, May 8th, 2023

Humanity produces a lot of data



Humanity produces a lot of data



Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

Dataset fits in system memory

Dataset = 2x system memory

Training time increased by 3x

Experiment setup

DGX-1 server

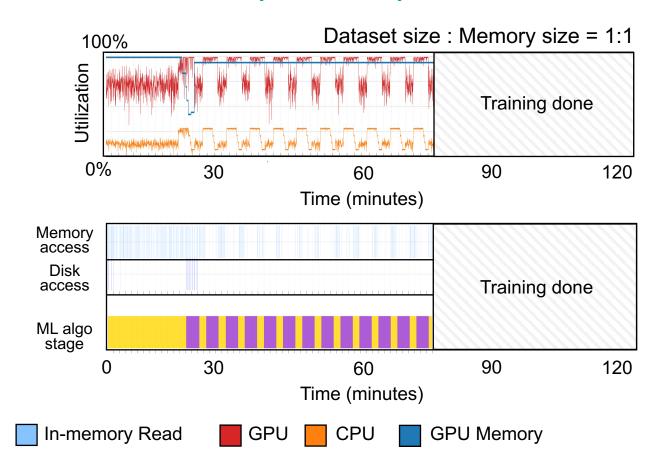
ML Training

- 8 x V100 GPUs, 32GB GPU memory
- 512GB DRAM
- Image segmentation workload:
 - Unet3D, Pytorch
 - MLPerf Training implementation

ML Evaluation

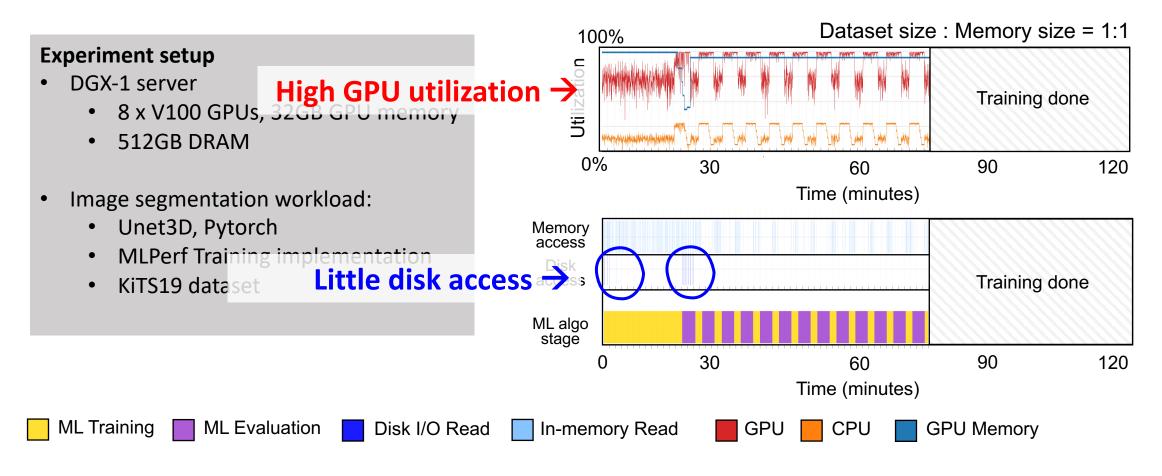
KiTS19 dataset

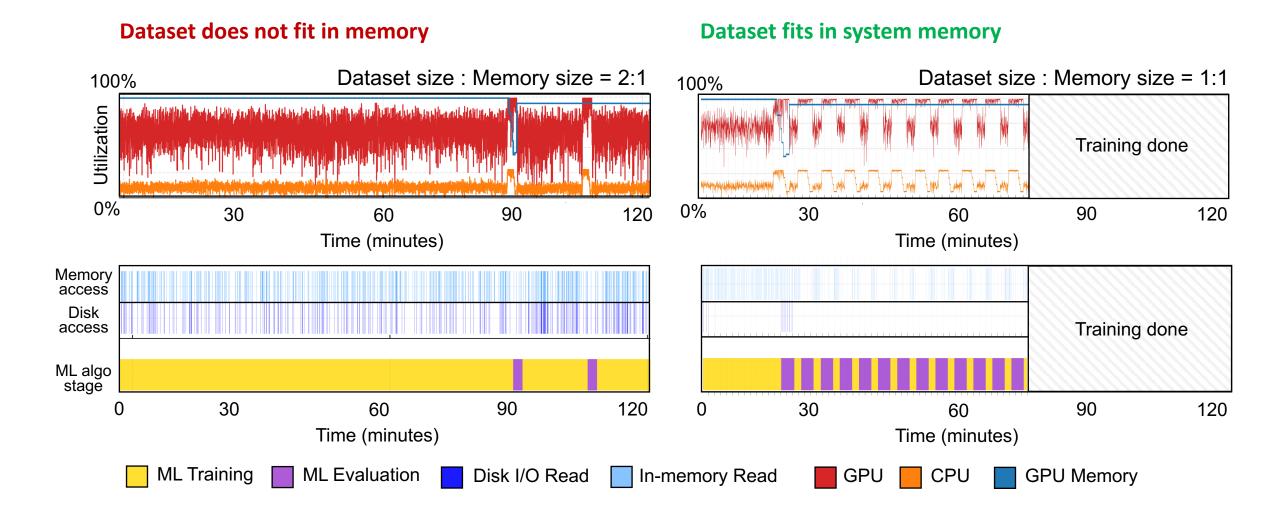
Dataset fits in system memory

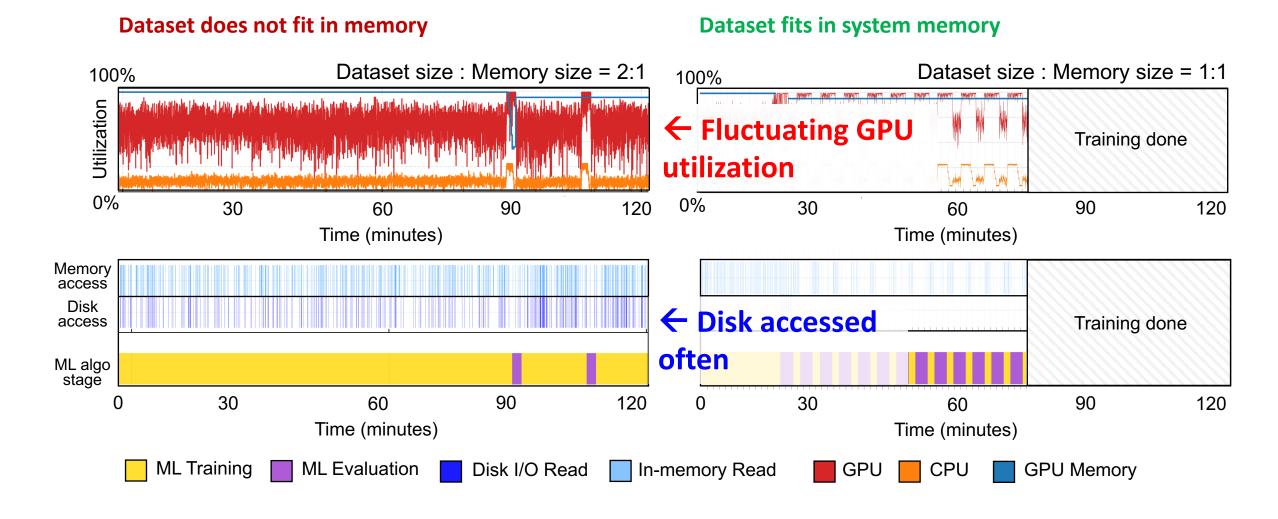


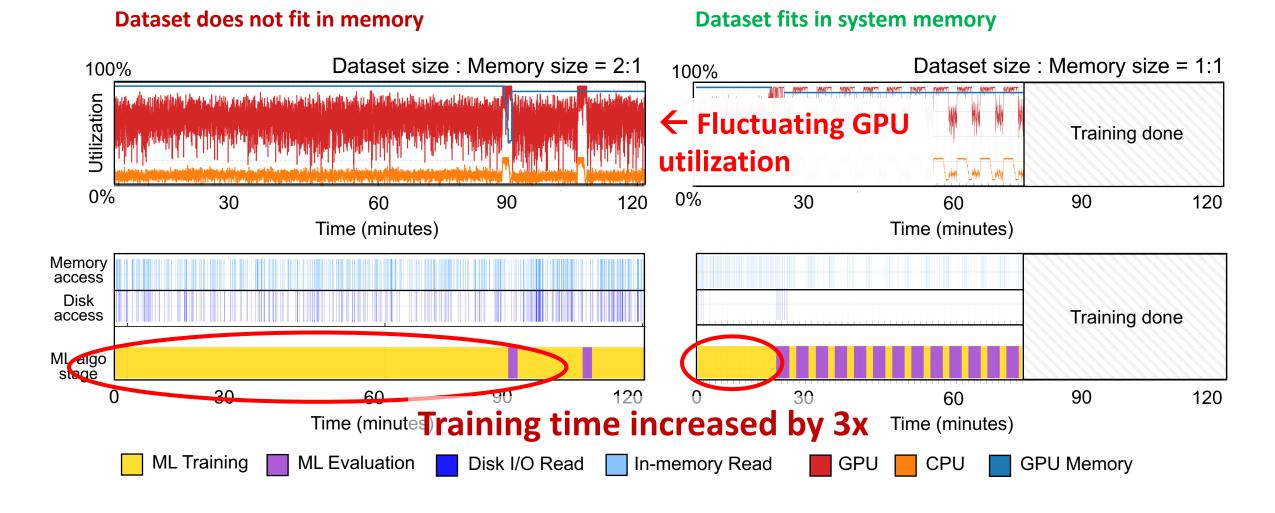
Disk I/O Read

Dataset fits in system memory









Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

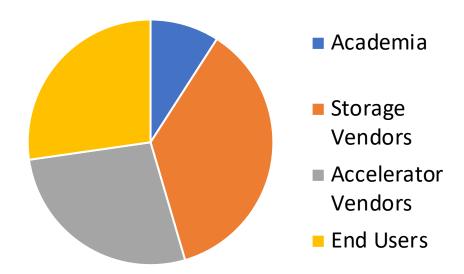
Why create an ML Storage benchmark?

Why create an ML Storage benchmark?

- Understand <u>storage</u> bottlenecks in ML workloads and propose optimizations
 - Help AI/ML researchers and practitioners make an informed <u>storage</u> decision

MLPerf Storage working group

Mix of industry and academia



tenstorrent

Current ML/AI benchmarks

Current ML/AI benchmarks

- Focus on end-to-end testing
 - → hard to isolate value of each component
- Insist on training and inference speed
 - → tend to simplify storage
 - → ignore pre-processing
- Expensive accelerators needed to run
- Require extensive entry knowledge

Benchmark Vision

Exi	istin	g b	en	chi	mai	rks
		· O · · ·				

Focus on end-to-end testing

Simplified storage setup

Expensive accelerators needed to run

Require extensive entry knowledge

Our work

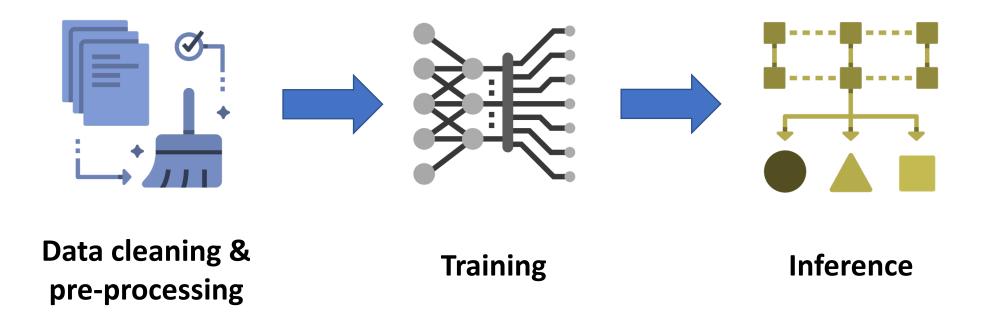
Focus on storage impact in ML/AI

Realistic storage & pre-processing settings

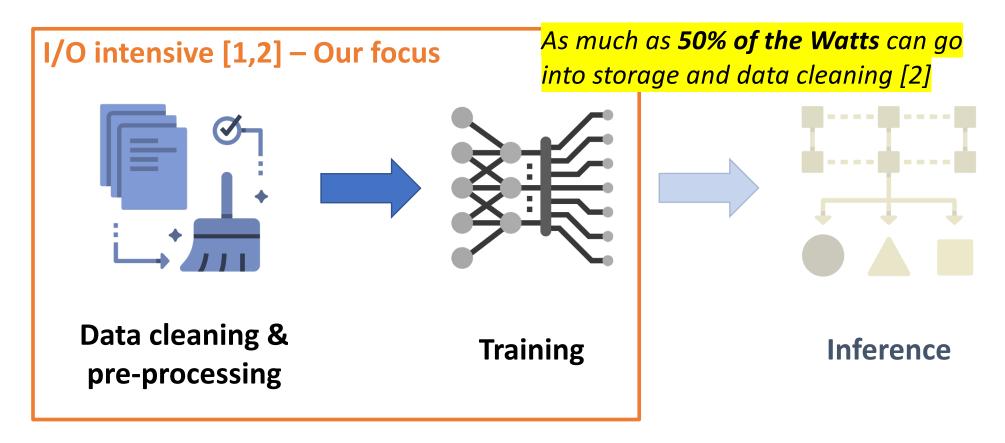
No accelerator required to run

Minimal AI/ML knowledge required

Stages of the ML Pipeline



Stages of the ML Pipeline



^[1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.

^[2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.

Memory

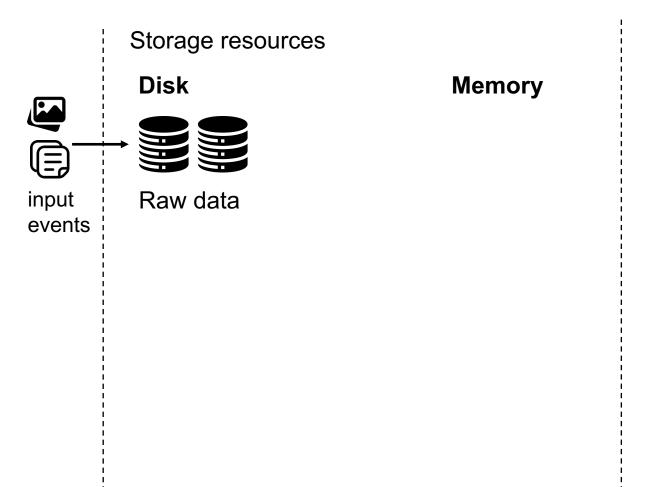
Storage resources

Disk

Compute resources

CPUs

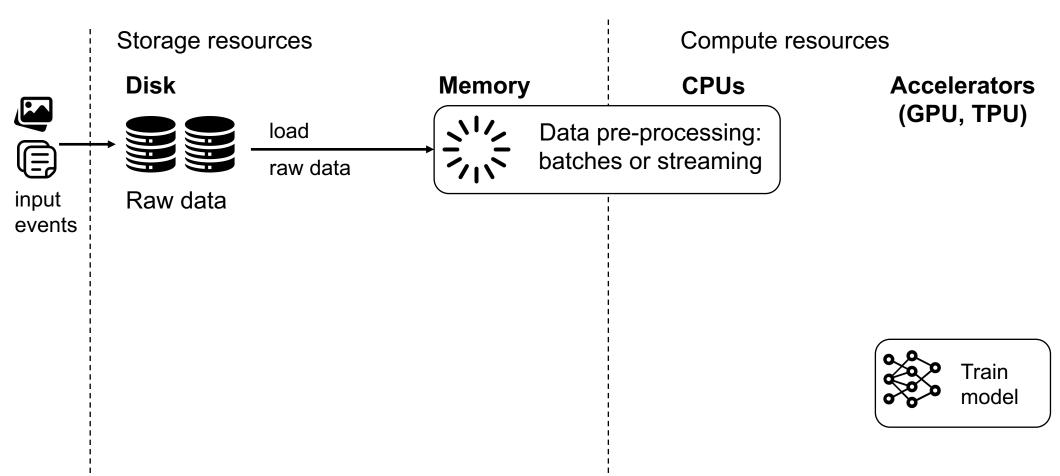
Accelerators (GPU, TPU)

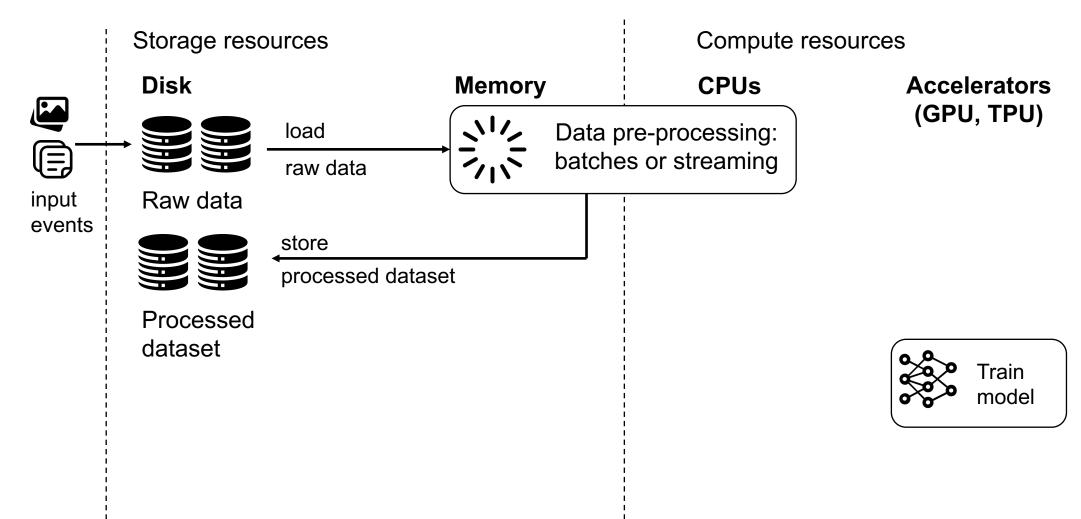


Compute resources

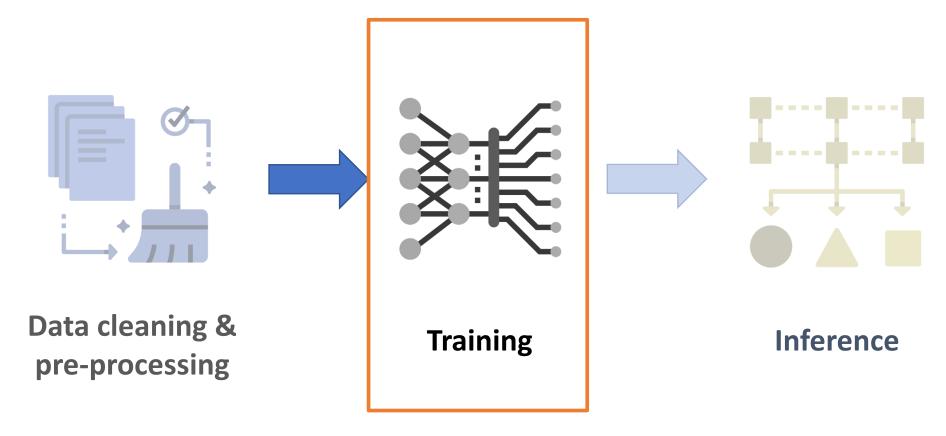
CPUs

Accelerators (GPU, TPU)

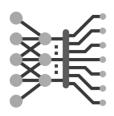




Stages of the ML Pipeline



- [1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.
- [2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.



Storage resources

Disk

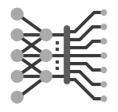
System Memory (DRAM)

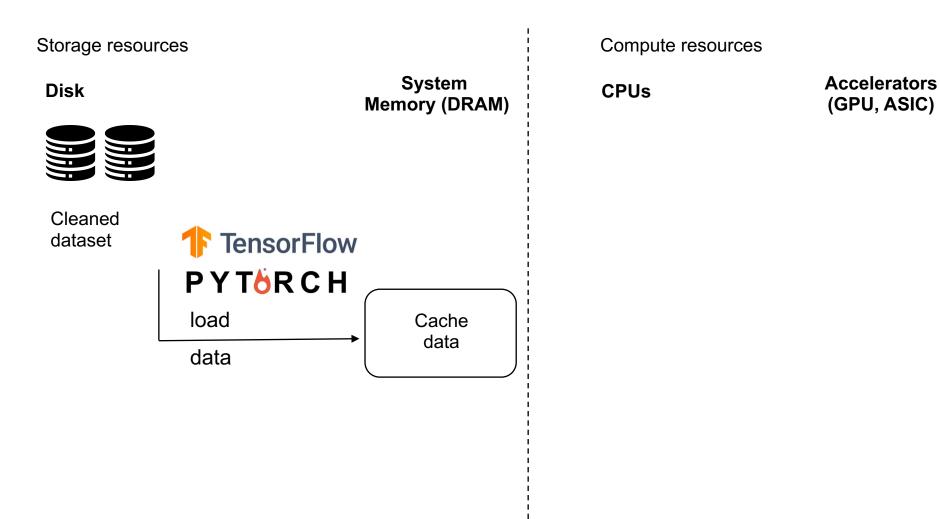
Compute resources

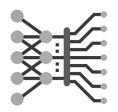
CPUs

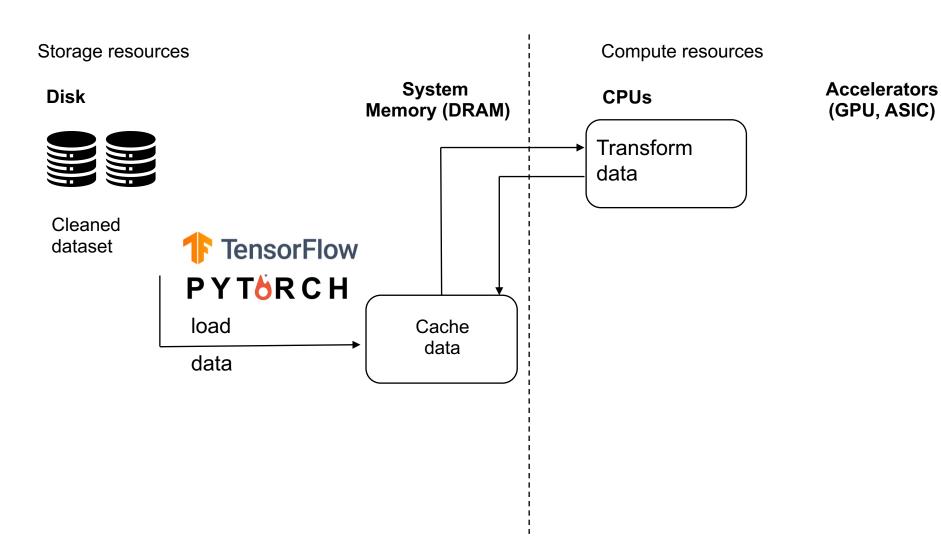
Accelerators (GPU, ASIC)

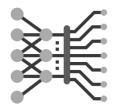
Cleaned dataset

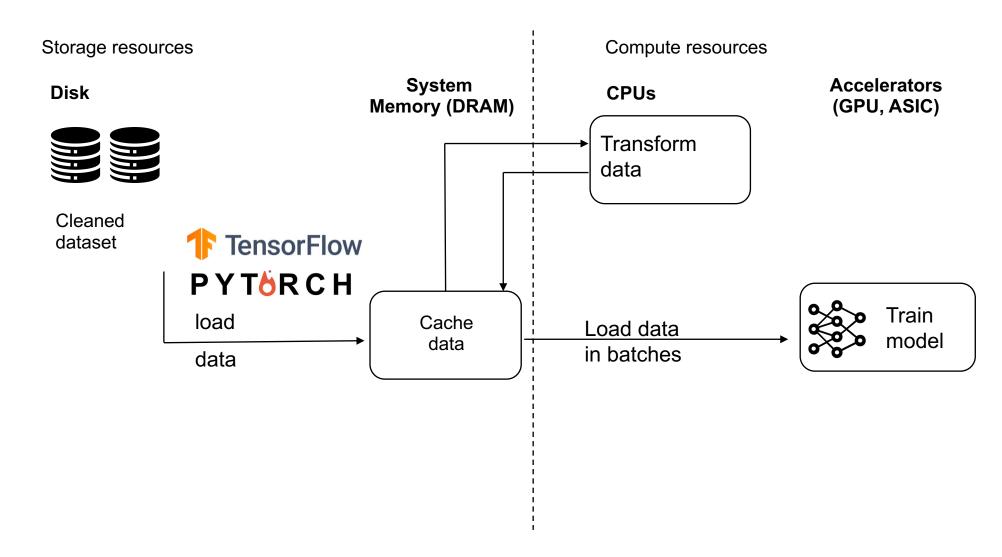








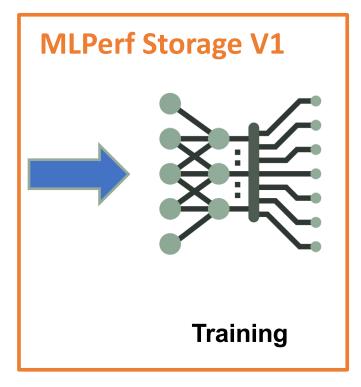




oana.balmau@mcgill.ca

MLPerf Storage

Data cleaning & pre-processing



Focus on storage impact in ML/AI

Realistic **storage** settings in

training phase

No accelerator required to run

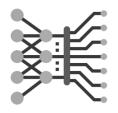
Minimal AI/ML knowledge

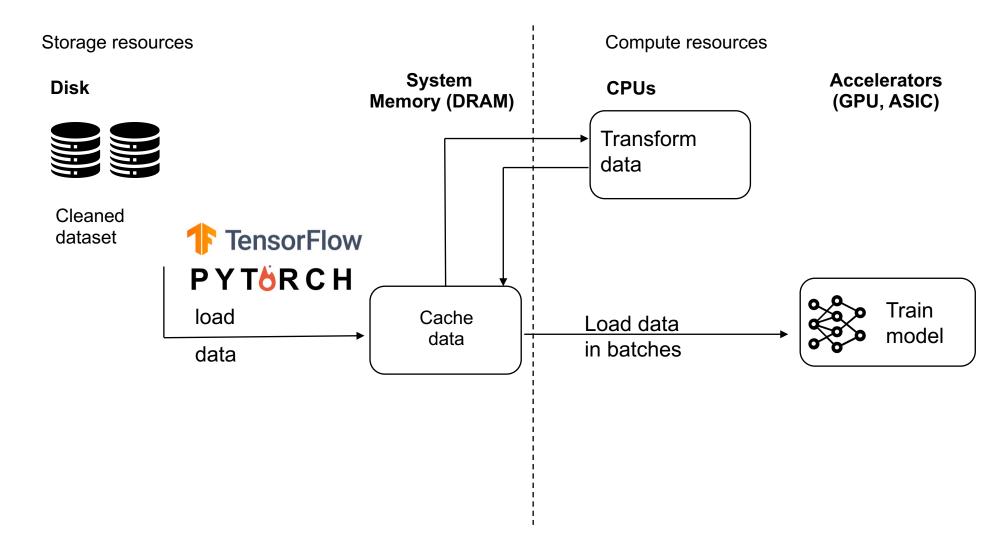
MLPerf Storage – workloads

Workload	Image segmentation	Natural language processing	Recommender Systems
Model	Unet3D	BERT	DLRM
Seed data	KiTS19 Set of images	Wikipedia 2020 Text	Criteo Terabyte Click logs
Framework	Pytorch	Tensorflow	Pytorch
I/O behavior	Random access inside many small files	Sequential access of small subset of files, streamed.	Random access inside one large file

- Single node
- Many simulated accelerators.

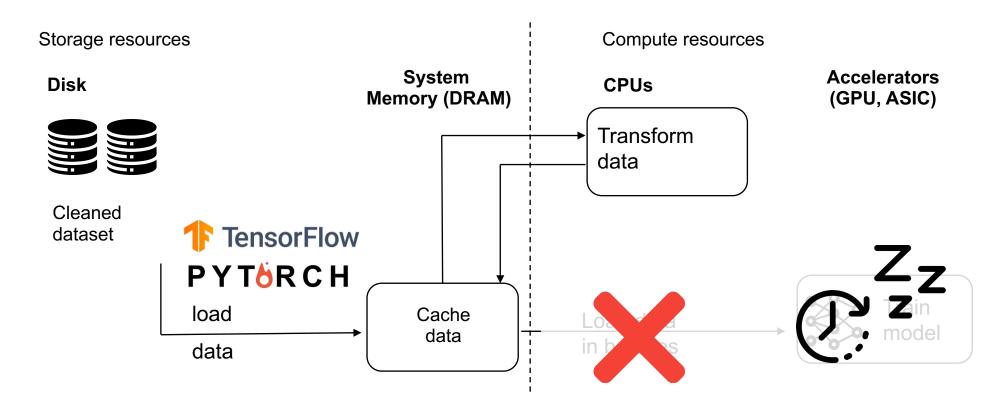
- Synthetic datasets generated from real dataset seed.
- Local storage





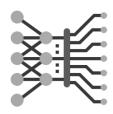


Data pipeline in MLPerf Storage benchmark



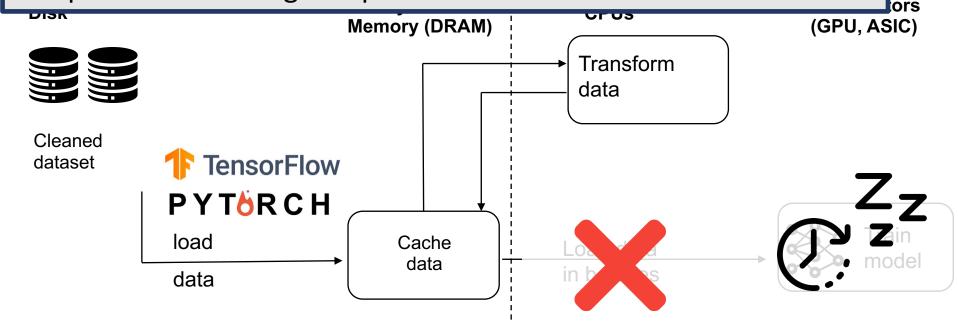
Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.



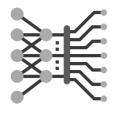
Data pipeline in MLPerf Storage benchmark

✓ Realistic storage settings: nothing changes in data pipeline, apart from training computation.

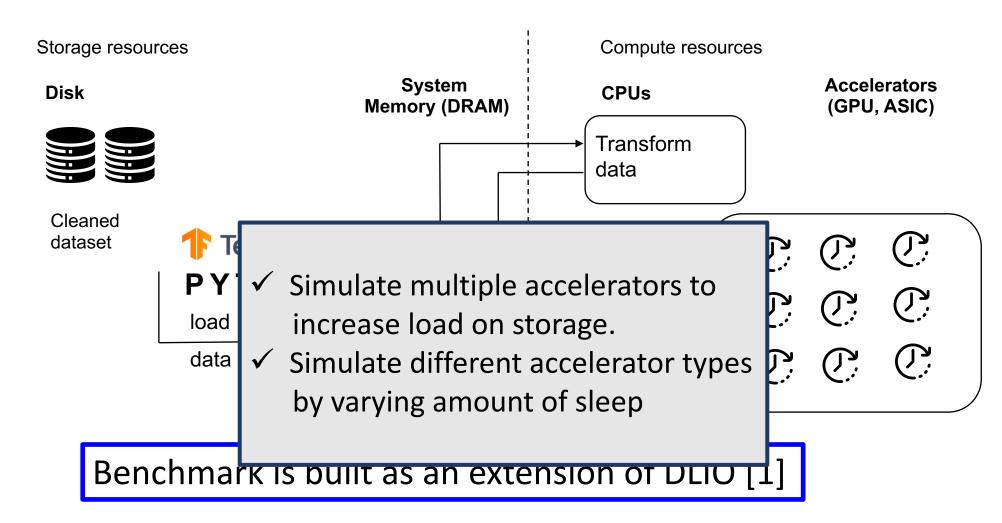


Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.



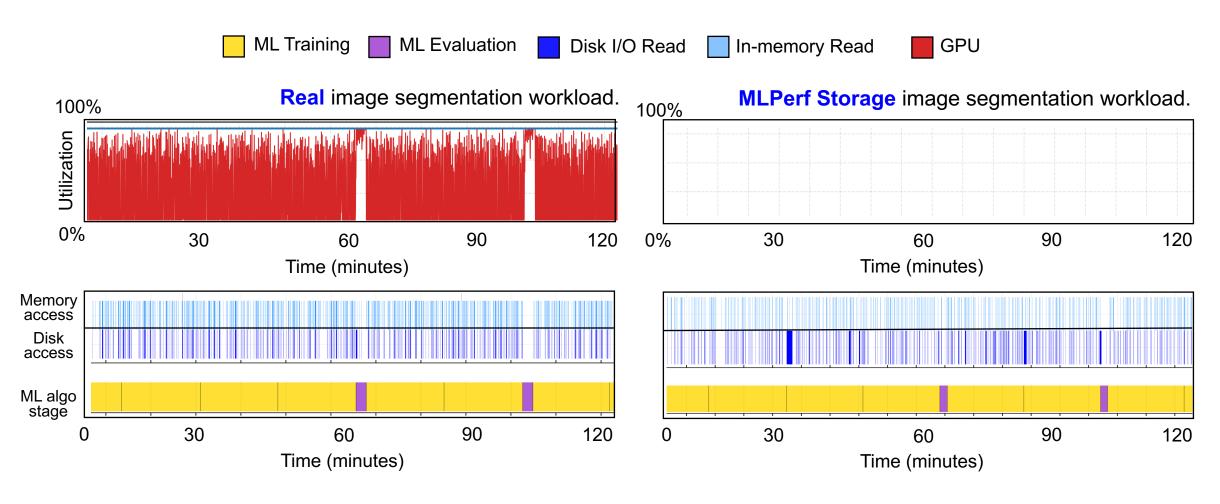
Data pipeline in MLPerf Storage benchmark



[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.

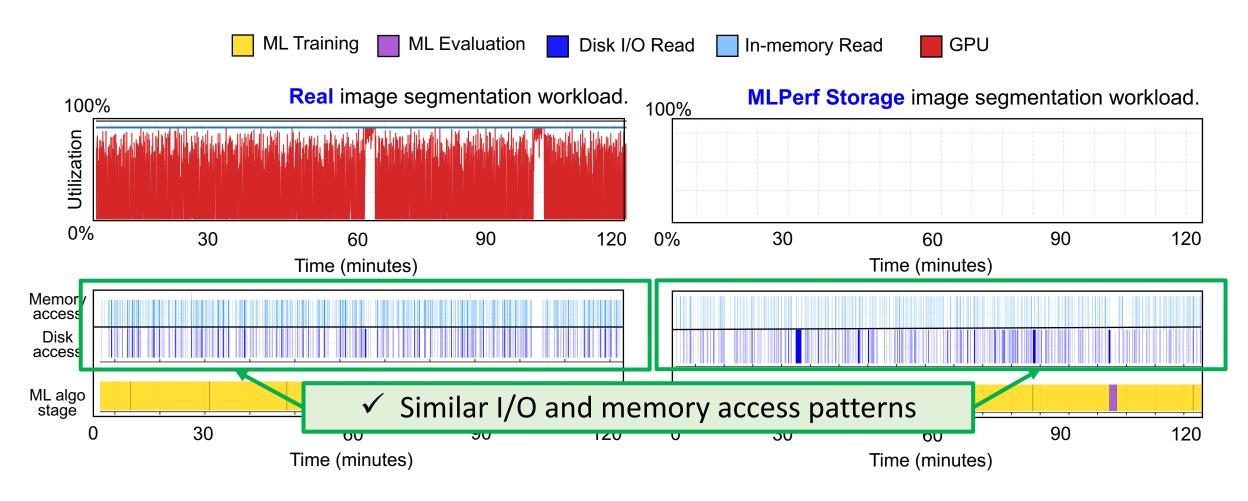
oana.balmau@mcgill.ca

Simulating training time does not impact I/O patterns



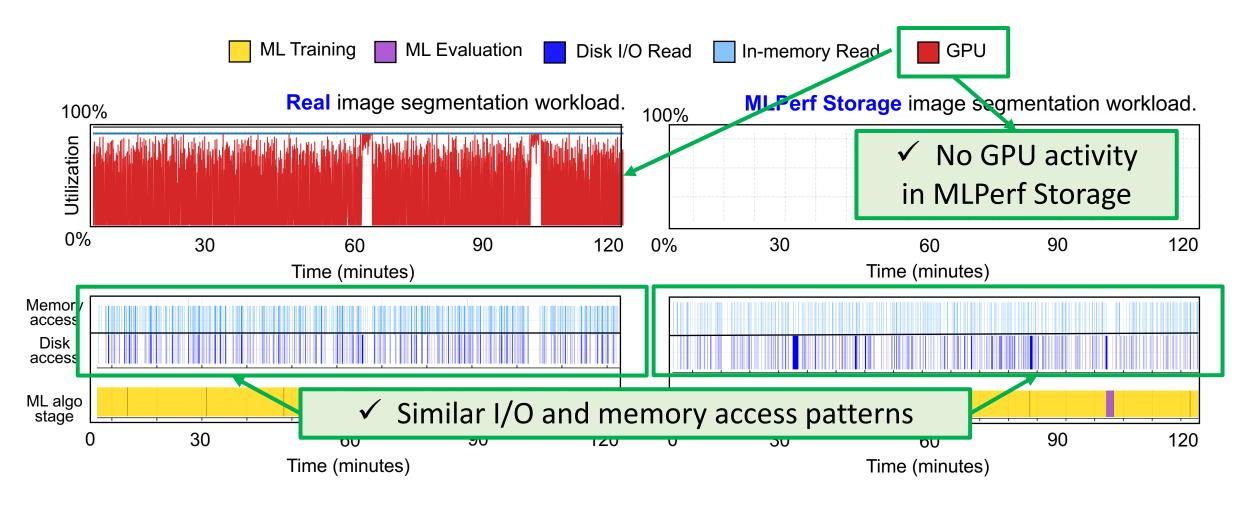
Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns



Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns



Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

Next Steps

Collect processing times for different accelerator types.

Open benchmark for submissions.

→ https://github.com/mlcommons/storage

I/O in distributed training

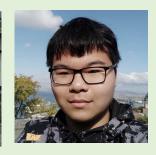
Trace and benchmark ML pre-processing phase.

McGill DISCS Lab

Postdoctoral Researcher

Dr. Stella Bitchebe

Nelson Bore



Jiaxuan Chen

discslab.cs.mcgill.ca gitlab.cs.mcgill.ca/discs-lab

Masters Students

Sebastian Rolon

PhD

Loïc Ho-Von

Aayush Kapur

Aidan Goldfarb

Rahma Nouaji

Undergraduate Students

Zachary Doucet

Zhongjie Wu

Olivier Michaud

Key Takeaways – MLPerf Storage

MLPerf Storage is a new benchmark

Realistic **storage** settings

No accelerators required to run

Follow MLPerf Storage repository for updates:

https://github.com/mlcommons/storage

Get involved mlcommons.org/en/get-involved/

We appreciate your feedback

Share your thoughts Email oana.balmau@mcgill.ca

Thanks to all working group co-chairs!

Curtis Anderson

Huihuo Zheng

Johnu George,

Panasas

Argonne National Labs

Nutanix