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The Development of Storage Devices
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CPU is the Bottleneck
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CPU has become the bottleneck !
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Storage Stack
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/0O Interfaces

POSIX IO (psync)
e Synchronous interface
e \Widely used

Asynchronous I/O (libaio)
e Asynchronous I/O interface for Linux

io_uring (iou)
e A new asynchronous I/O interface
e Designed for performance
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Research Problems

Q17: What is the performance gap between different 1/O API
and storage stacks?

Q2: What is the cause of the performance gap?

Q3: How does the performance gap scale with the number of
processes?



Setup

Devices
Intel Optane * 7 — 3.8 Million IOPS

Workload generator
fio — Widely used + flexible

Workload
4KB random read — to maximize software overhead
Low workload — 1 outstanding request
High workload — 128 outstanding request



What is the performance gap between
different I/O APIs and storage stacks?



Performance: Low Workload (Queue Depth = 1)
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psync has better throughput than libaio and iou
Polling improves the throughput
SPDK has better throughput than the Linux storage stack
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Performance: High Workload (Queue Depth = 128)
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iou is better than libaio
Polling improves throughput, slightly
SPDK has much better throughput than the linux storage stack 1



Why there is a performance gap?

Number of instructions per I/O

Instructions per cycle (IPC)
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Micro-architectural Efficiency: # Instructions per I/O
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psync is more efficient than libaio and io_uring

Polling wastes instructions at low workload
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Micro-architectural Efficiency: # Instructions per I/O
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Polling is efficient at high workload

SPDK is much more efficient than the Linux storage stack
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Micro-architectural Efficiency: IPC

Low
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iou has higher IPC
Polling leads to high IPC at low workload

non-polling
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Micro-architectural Efficiency: IPC
High \
Workload

IPC

libaio iou iou_c iou_s SPDK

Non-polling delivers to high IPC than low workload

No difference between non-polling and polling APIs

16



How does the performance gap scale with
the number of processes?

Scalability of performance

Impact of I/O schedulers
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Scalability

14 cores

- aio -iou/iou_c = SPDK
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Performance scales linearly for the Linux kernel I/O APIs
io_uring has better performance

SPDK has much higher efficiency than the Linux storage stack
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/O Schedulers
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All the 1/0 schedulers has overhead than the none scheduler
kyber can saturate all the devices with enough CPU resource

mg-deadline and BFQ has bad performance for cross-NUMA access 1



Take-Home Messages

1.

Use polling, but carefully
Polling wastes CPU time at low I/O workload

Big gap between Linux storage stack and SPDK
SPDK is lightweight and can deliver higher throughput when
CPU is the bottleneck

The problem of Linux I/O stack is inefficiency
Reduce software overhead, scalability of I/O schedulers

Source code: https://github.com/atlarge- 20
research/Performance-Characterization-Storage-Stacks
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Thank you!
Questions?



Backup Slides: Work Breakdown
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Backup Slides: I/O Scheduler
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MIOPS

Backup Slides: I/O Scheduler
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(a) default io_uring (iou). (b) with completion polling (iou-c). (c) with submission polling (iou-s).
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