Performance Characterization
of Modern Storage Stacks

Zebin Ren and Animesh Trivedi

O VU Amsterdam

z.ren@vu.nl
a.trivedi@vu.nl

VRIJE
UNIVERSITEIT
%> AMSTERDAM
& Paper: https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf

Source code: https://qithub.com/atlarge- research/Performance-Characterization-Storage-Stacks

mailto:z.ren@vu.nl
mailto:a.trivedi@vu.nl
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf
https://github.com/atlarge-

The Development of Storage Devices

New
Devices
Less than 1k 1/O per Second [550-1000K I/O per Second
Latency: ~5ms Latency: ~7us

More than

1000x
speed up ‘ ' u mj
’ EXPRESS

New —
Interfaces A I A
L.a ¥

CPU is the Bottleneck

| | I g ": I “‘::
107 - E E “"*. —
. = A; >
10° | — 4"*‘:*‘ :
5 LA
10 I "": A.‘P A‘_.--"'. "
RISV T St o @® _,Q'
B) - YO
104 - ¥ “A;‘A‘A‘ i d :f ----------------- s. .
da 4 4 ‘ﬂ: *‘“‘ g
103 - 5 AA“cA' :ﬂ;m:n.l- ------ .----‘-.‘. —
Seary - Ll -
102 | A S l- - ';JV' ‘.:;.v‘;.'x,‘ﬂ..'v.‘.: .
g nE Ay IS, R %
1] e e] vy V. 3' :' ’o.‘f“ gt”
10" POSIC I L4 LR DA =
;o::.' o* v v v' v vy : o’“ g““‘
10° —‘ * T e o s oo o oorbeom ¢ 9 -
] | | S i]
1970 1980 1990 2000 2010

CPU has become the bottleneck !

Single-thread
performance

(SpecINT x 10°) /
Frequency (MHz) F

requency

Transistors
(thousands)

Single-Thread

Performance

Typical Power
(Watts)

Number of
Logical Cores

2020

https://www.researchgate.net/figure/42-Years-of-Microprocessor-Trend-Data-6-Orange-Moores-Law-trend-Purpule-Dennard_fig1_336577121 3

Storage Stack
Linux storage stack SPDK

Application

l System call
/O Interface

Application

e
O
| Device

Sync, async

Cache, share

File System

¥ Heavy Stagk
Block Layer /

v

NVMe Driver
; Interrupts

v

Device

Polling

Device

/0O Interfaces

POSIX IO (psync)
e Synchronous interface
e \Widely used

Asynchronous I/O (libaio)
e Asynchronous I/O interface for Linux

io_uring (iou)
e A new asynchronous I/O interface
e Designed for performance

l0_uring

Application

Application Application

- e | @ B o B o B O O B - e 1 & B o B o= B O] O 2

io_uring io_uring

iou iou_c iou_s

Completion Polling Submission Polling -

Research Problems

Q17: What is the performance gap between different 1/O API
and storage stacks?

Q2: What is the cause of the performance gap?

Q3: How does the performance gap scale with the number of
processes?

Setup

Devices
Intel Optane * 7 — 3.8 Million IOPS

Workload generator
fio — Widely used + flexible

Workload
4KB random read — to maximize software overhead
Low workload — 1 outstanding request
High workload — 128 outstanding request

What is the performance gap between
different I/O APIs and storage stacks?

Performance: Low Workload (Queue Depth = 1)

150
non-polling
n
o
5 10 | poling
X
5
o
S 50
5
o
£
-
0

psync libaio iou iou_c iou_s SPDK

psync has better throughput than libaio and iou
Polling improves the throughput
SPDK has better throughput than the Linux storage stack

10

Performance: High Workload (Queue Depth = 128)

1200
non-polling
o
S a0 _poling
=
s 600
£
= 400
3
= 200
-
0

libaio iou iou_c iou_s SPDK

iou is better than libaio
Polling improves throughput, slightly
SPDK has much better throughput than the linux storage stack 1

Why there is a performance gap?

Number of instructions per I/O

Instructions per cycle (IPC)

12

Micro-architectural Efficiency: # Instructions per I/O
Low
150

Workioad

3
2 o _poling__
o
Q
Q.
(72]
S
5 50
2
%
=
0

psync libaio iou iou_c iou_s SPDK

psync is more efficient than libaio and io_uring

Polling wastes instructions at low workload

13

Micro-architectural Efficiency: # Instructions per I/O
High s

Workload _polli
:

5

3

Q m
e 15
(=X

2

S 10
)

O

-

]

(7))

£

0
libaio iou iou_c iou_s SPDK

Polling is efficient at high workload

SPDK is much more efficient than the Linux storage stack

14

Micro-architectural Efficiency: IPC

Low
Workload

IPC

-—

psync libaio iou iou_c iou_s SPDK

iou has higher IPC
Polling leads to high IPC at low workload

non-polling

15

Micro-architectural Efficiency: IPC
High \
Workload

IPC

libaio iou iou_c iou_s SPDK

Non-polling delivers to high IPC than low workload

No difference between non-polling and polling APIs

16

How does the performance gap scale with
the number of processes?

Scalability of performance

Impact of I/O schedulers

17

Scalability

14 cores

- aio -iou/iou_c = SPDK

15 cores

Throughput (MIOPS)

5 10 15 20
Number of threads

Performance scales linearly for the Linux kernel I/O APIs
io_uring has better performance

SPDK has much higher efficiency than the Linux storage stack

18

/O Schedulers

g = none = BFQ = kyber = mq-deadline

o

=

[r)

=

Q.

=

o)

=

o

|

= |

=]
1
P 15 20
l

NUMA node 1 NUMA node 0

Number of threads

All the 1/0 schedulers has overhead than the none scheduler
kyber can saturate all the devices with enough CPU resource

mg-deadline and BFQ has bad performance for cross-NUMA access 1

Take-Home Messages

1.

Use polling, but carefully
Polling wastes CPU time at low I/O workload

Big gap between Linux storage stack and SPDK
SPDK is lightweight and can deliver higher throughput when
CPU is the bottleneck

The problem of Linux I/O stack is inefficiency
Reduce software overhead, scalability of I/O schedulers

Source code: https://github.com/atlarge- 20
research/Performance-Characterization-Storage-Stacks

https://github.com/atlarge-
https://github.com/atlarge-

Thank you!
Questions?

Backup Slides: Work Breakdown

B fio B block_layer Bl kernel B fio EE block_layer B kernel
3 I/Olib E3 nvmedriver HEEE misc. = I/O0lib EE nvmedriver [misc.
100 1 100
80 1 80 -
o o
© 601 © 601
+J +J
C c
3 3
b :]
s 40 = 40
(a a
20 20
0- 0-

psync aio iou iou-c iou-s spdk-fio aio iou iou-c iou-s spdk-fio

Backup Slides: I/O Scheduler

== NONe
-%— bfq

41 —@— Kkyber
=%¥— mq-deadline

12 4 6 8 10 12 14 16 18 20

23

MIOPS

Backup Slides: I/O Scheduler

5 5 5

= none == none g IO

-4~ bfq - bfq -8~ bfq
4{ =@ kyber 4 —®— kyber 4{ =@ kyber

=¥ mq-deadline ~¥- mq-deadline ~%¥— mg-deadline

£+ none-nodel =+ none-nodel T e A =+ none-nodel
3| - #%- bfg-nodel = feuens P poobrapeig| oy 3110 bfg-nodel w03 bfg-nodel

®- kyber-nodel a -®- kyber-nodel o ®- kybernodel — _a#T....

¥- mg-deadline-nodel 90 ® 990990000 O |.y. mgdeadline-nodel o ¥- mg-deadline-nodel P 4
2 LV Yy YRy | =2 22
1 1l T g Yy

012 4 6 8 10 12 14 16 18 20 012 4 6 8 10 12 14 16 18 20 o12 4 6 8 10 12 14 16 18 20

(a) default io_uring (iou). (b) with completion polling (iou-c). (c) with submission polling (iou-s).

24

