
Performance Characterization
of Modern Storage Stacks

Zebin Ren and Animesh Trivedi

 VU Amsterdam

1

z.ren@vu.nl
a.trivedi@vu.nl

Paper: https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf
Source code: https://github.com/atlarge- research/Performance-Characterization-Storage-Stacks

mailto:z.ren@vu.nl
mailto:a.trivedi@vu.nl
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf
https://github.com/atlarge-

The Development of Storage Devices

2

New
Devices

New
Interfaces

Less than 1k I/O per Second
Latency: ~5ms

550-1000K I/O per Second
Latency: ~7us

More than
1000x

speed up

CPU is the Bottleneck

3

CPU has become the bottleneck !

https://www.researchgate.net/figure/42-Years-of-Microprocessor-Trend-Data-6-Orange-Moores-Law-trend-Purpule-Dennard_fig1_336577121

Frequency

Single-thread
performance

Storage Stack

4

Application

I/O Interface

File System

Block Layer

NVMe Driver

Device

Linux storage stack

Interrupts

System call

Application

Device

SPDK

SPDK

Polling

Heavy Stack

Sync, async

Cache, share

OverheadSchedulers

I/O Interfaces

5

POSIX IO (psync)
● Synchronous interface
● Widely used

Asynchronous I/O (libaio)
● Asynchronous I/O interface for Linux

io_uring (iou)
● A new asynchronous I/O interface
● Designed for performance

io_uring

6

SQ CQ

Kernel

Application

io_uring

1

Sy
sc

al

2

3 4

5

Syscal

iou

SQ CQ

Kernel

Application

io_uring

Sy
sc

al
Syscal

iou_c

Polling

SQ CQ

Kernel

Application

io_uring

Sy
sc

al

Syscal

iou_s

Polling

Polling

Polling

Completion Polling Submission Polling

Research Problems

Q1: What is the performance gap between different I/O API
and storage stacks?

Q2: What is the cause of the performance gap?

Q3: How does the performance gap scale with the number of
processes?

7

Setup

8

Devices
Intel Optane * 7 → 3.8 Million IOPS

Workload generator
fio → Widely used + flexible

Workload
4KB random read → to maximize software overhead
Low workload → 1 outstanding request
High workload → 128 outstanding request

What is the performance gap between
different I/O APIs and storage stacks?

9

Performance: Low Workload (Queue Depth = 1)

10

psync has better throughput than libaio and iou

40%

70%

SPDK has better throughput than the Linux storage stack
Polling improves the throughput

non-polling

polling

Performance: High Workload (Queue Depth = 128)

11

iou is better than libaio

non-polling

polling

SPDK has much better throughput than the linux storage stack

Polling improves throughput, slightly

3.32x

Why there is a performance gap?

12

Number of instructions per I/O

Instructions per cycle (IPC)

Micro-architectural Efficiency: # Instructions per I/O
Low
Workload

13

non-polling

polling

psync is more efficient than libaio and io_uring
Polling wastes instructions at low workload

Micro-architectural Efficiency: # Instructions per I/O
High
Workload

14

Polling is efficient at high workload
SPDK is much more efficient than the Linux storage stack

non-polling

polling
10%

72%

Micro-architectural Efficiency: IPC
Low
Workload

15

non-polling

polling

iou has higher IPC

Polling leads to high IPC at low workload

Micro-architectural Efficiency: IPC
High
Workload

16

non-polling

polling

Non-polling delivers to high IPC than low workload

No difference between non-polling and polling APIs

How does the performance gap scale with
the number of processes?

17

Scalability of performance

Impact of I/O schedulers

Scalability

18

Performance scales linearly for the Linux kernel I/O APIs

SPDK has much higher efficiency than the Linux storage stack

io_uring has better performance

Number of threads

4 cores 13 cores
14 cores

15 cores

I/O Schedulers

19

All the I/O schedulers has overhead than the none scheduler

mq-deadline and BFQ has bad performance for cross-NUMA access

kyber can saturate all the devices with enough CPU resource

(M
IO

PS
)

NUMA node 1 NUMA node 0

Take-Home Messages

20Source code: https://github.com/atlarge-
research/Performance-Characterization-Storage-Stacks

1. Use polling, but carefully
Polling wastes CPU time at low I/O workload

2. Big gap between Linux storage stack and SPDK
SPDK is lightweight and can deliver higher throughput when
CPU is the bottleneck

3. The problem of Linux I/O stack is inefficiency
Reduce software overhead, scalability of I/O schedulers

https://github.com/atlarge-
https://github.com/atlarge-

Thank you!
Questions?

21

Backup Slides: Work Breakdown

22

Backup Slides: I/O Scheduler

23

Backup Slides: I/O Scheduler

24

